I have set up this New Keynesian Model of two countries in a Currency Union. It is correspondent to the model from the book of Jordi Galí. Unfortunately the Blanchard-Kahn-Conditions of this model are not met. I do not understand what the problem is. There are 2 New Keynesian Philips Curves, 2 Dynamic IS curves and 1 Taylor rule. The NKPC and the DIS depend on foreign and domestic shocks and output gaps.
Parameter calibrations don't change the problem.
H means Home country, F foreign country.
var y_H, y_F, y, pi_H, pi_F, pi, g_H, g_F, a, v, i;
Could you help me out? thanks.
//y Output, pi Inflation, g goverment shocks, a technology shocks, v interest rate shocks, i interest rate.
varexo epsilon_a epsilon_g_H epsilon_g_F epsilon_v;
parameters sigma, rho, phi, alpha, beta, theta, epsilon, phi_pi, phi_y, rho_a, rho_v, rho_g_H, rho_g_F, omega, lambda, sigma_alpha, kappa_y_H, kappa_y_F, kappa_g_H, kappa_g_F, mu, zeta;
alpha = 0.5;
beta = 0.99;
theta = 2/3;
epsilon = 6;
sigma = 1;
phi = 1;
rho_v = 0.5;
rho_a = 0.9;
rho_g_H = 0.9;
rho_g_F = 0.9;
phi_y = 0.5/4;
phi_pi = 1.5;
rho = -1*log(beta);
lambda = (1-theta)*(1-beta*theta)/theta;
omega = sigma + (sigma-1)*(1-2*alpha);
sigma_alpha = (1-2*alpha+2*alpha*omega)/sigma;
kappa_y_H = lambda*(sigma_alpha*(1-alpha+alpha*omega/sigma) + phi);
kappa_y_F = lambda*(sigma - sigma_alpha*(1-alpha+alpha*omega/sigma));
kappa_g_H = -1*lambda*(sigma_alpha*(1-alpha+alpha*omega/sigma));
kappa_g_F = -1*kappa_y_F;
mu = (omega - 1);
zeta = mu*alpha*sigma_alpha/(sigma-mu*alpha*sigma_alpha);
model (linear);
y_H = y_H(+1) - 1/(sigma-mu*alpha*sigma_alpha)*(i - rho - pi_H(+1)) - rho_g_H*g_H + zeta*(y_F(+1)-y_F) + (1-rho_g_F)*zeta*g_F;
y_F = y_F(+1) - 1/(sigma-mu*alpha*sigma_alpha)*(i - rho - pi_F(+1)) - rho_g_F*g_F + zeta*(y_H(+1)-y_H) + (1-rho_g_H)*zeta*g_H;
pi_H = beta*pi_H(+1) + kappa_y_H*y_H + kappa_y_F*y_F + kappa_g_H*g_H + kappa_g_F*g_F - (1+phi)*a;
pi_F = beta*pi_F(+1) + kappa_y_H*y_F + kappa_y_F*y_H + kappa_g_H*g_F + kappa_g_F*g_H - (1+phi)*a;
y = (y_H + y_F)/2;
pi = (pi_H + pi_F)/2;
i = phi_y*y + phi_pi*pi + v;
a = rho_a*a(-1) + epsilon_a;
g_H = rho_g_H*g_H(-1) + epsilon_g_H;
g_F = rho_g_F*g_F(-1) + epsilon_g_F;
v = rho_v*v(-1) + epsilon_v;
end;
initval;
y_H = 0;
y_F = 0;
y = 0;
pi_H = 0;
pi_F = 0;
pi = 0;
i = 0;
g_H = 0;
g_F = 0;
a = 0;
v = 0;
end;
steady;
check;
shocks;
var epsilon_g_H = 0.75^2;
var epsilon_g_F = 0.75^2;
var epsilon_a = 1^2;
var epsilon_v = 0.25^2;
end;
stoch_simul(irf=12);