error with estimation in DSGE

This forum is closed. You can read the posts but cannot write. We have migrated the forum to a new location where you will have to reset your password.
Forum rules
This forum is closed. You can read the posts but cannot write. We have migrated the forum to a new location (https://forum.dynare.org) where you will have to reset your password.

error with estimation in DSGE

Postby hamideconomy80 » Tue Jun 14, 2016 8:06 am

hi all
i have a mod file that is the dsge model for 2 sectors
i will run the estimation file of my model but it has the error
if it is possible to you. please run it and give me opinions
this is the first estimation file in DSGE that i will run , therefore please give me information
the attachments are the mod and data file
thanks
Attachments
data3.m
(6.85 KiB) Downloaded 150 times
esti.mod
(9.89 KiB) Downloaded 132 times
hamideconomy80
 
Posts: 16
Joined: Thu Nov 12, 2015 6:36 am

Re: error with estimation in DSGE

Postby jpfeifer » Mon Jun 27, 2016 9:49 am

Which error are you referring to?
------------
Johannes Pfeifer
University of Cologne
https://sites.google.com/site/pfeiferecon/
jpfeifer
 
Posts: 6940
Joined: Sun Feb 21, 2010 4:02 pm
Location: Cologne, Germany

Re: error with estimation in DSGE

Postby hamideconomy80 » Wed Jun 29, 2016 7:07 am

jpfeifer wrote:Which error are you referring to?

hi dear jpfeifer
when i run my dynare code after running the result are according to below

POSTERIOR KERNEL OPTIMIZATION PROBLEM!
(minus) the hessian matrix at the "mode" is not positive definite!
=> posterior variance of the estimated parameters are not positive.
You should try to change the initial values of the parameters using
the estimated_params_init block, or use another optimization routine.
Warning: The results below are most likely wrong!
> In dynare_estimation_1 (line 694)
In dynare_estimation (line 89)
In esti (line 892)

RESULTS FROM POSTERIOR ESTIMATION
parameters
prior mean mode s.d. prior pstdev

mu_w_ss 1.250 1.2500 0.0004 invg 0.2000
mu_d_ss 1.150 1.1500 0.0001 invg 0.2000
mu_m_ss 1.200 1.2000 0.0000 invg 0.2000
mu_c_ss 1.050 1.0500 0.0117 invg 0.2000
mu_i_ss 1.050 1.0500 0.0044 invg 0.2000
mu_g_ss 1.050 1.0500 0.0078 invg 0.2000
mu_x_ss 1.050 1.0500 0.0000 invg 0.2000
vartheta_h 0.500 0.5000 0.0000 invg 0.1000
omega_h 0.400 0.4000 0.0000 beta 0.1000
vartheta_for 0.500 0.5000 0.0000 invg 0.1000
S 7.600 7.6000 0.0000 norm 1.5000
xi_w 0.840 0.8400 0.0000 beta 0.1000
xi_d 0.790 0.7900 0.0002 beta 0.1000
xi_i 0.630 0.6300 0.0000 beta 0.1000
xi_g 0.630 0.6300 0.0000 beta 0.1000
xi_x 0.440 0.4400 0.0000 beta 0.1000
kappa_w 0.500 0.5000 0.0000 beta 0.1000
kappa_d 0.500 0.5000 0.0000 beta 0.1000
kappa_m 0.500 0.5000 0.0000 beta 0.1000
kappa_c 0.500 0.5000 0.0000 beta 0.1000
kappa_i 0.500 0.5000 0.0000 beta 0.1000
kappa_g 0.500 0.5000 0.0000 beta 0.1000
kappa_x 0.500 0.5000 0.0000 beta 0.1000
rho_eps_i 0.600 0.6000 0.0000 beta 0.1000
rho_eps_c 0.600 0.6000 0.0001 beta 0.1000
rho_eps_phi 0.600 0.6000 0.0001 beta 0.1000
rho_eps_a 0.600 0.6000 0.0001 beta 0.1000
rho_eps_l 0.600 0.6000 0.0000 beta 0.1000
rho_mu_d 0.600 0.6000 0.0001 beta 0.1000
rho_mu_c 0.600 0.6000 0.0000 beta 0.1000
rho_mu_i 0.600 0.6000 0.0001 beta 0.1000
rho_mu_g 0.600 0.6000 0.0000 beta 0.1000
rho_mu_x 0.600 0.6000 0.0001 beta 0.1000
rho_mu_m 0.600 0.6000 0.0000 beta 0.1000
rho_zeta 0.600 0.6000 0.0000 beta 0.1000
rho_zeta_for 0.600 0.6000 0.0001 beta 0.1000
rho_tau_l 0.600 0.6000 0.0000 beta 0.1000
rho_tau_c 0.600 0.6000 0.0001 beta 0.1000
rho_g 0.600 0.6000 0.0000 beta 0.1000
rho_pie_for 0.600 0.6000 0.0000 beta 0.1000
rho_y_for 0.600 0.6000 0.0049 beta 0.1000
rho_r_for 0.600 0.6000 0.0000 beta 0.1000
rho_pie_bar 0.600 0.6000 0.0020 beta 0.1000

standard deviation of shocks
prior mean mode s.d. prior pstdev

eta_eps_i 0.150 0.1500 0.0015 invg 0.1500
eta_eps_c 0.150 0.1500 0.0018 invg 0.1500
eta_eps_phi 0.020 0.0200 0.0000 invg 0.0200
eta_eps_a 0.020 0.0200 0.0000 invg 0.0200
eta_eps_l 0.150 0.1500 0.0000 invg 0.1500
eta_mu_d 0.150 0.1500 0.0000 invg 0.1500
eta_mu_c 0.150 0.1500 0.0010 invg 0.1500
eta_mu_i 0.150 0.1500 0.0000 invg 0.1500
eta_mu_g 0.150 0.1500 0.0009 invg 0.1500
eta_mu_x 0.150 0.1500 0.0000 invg 0.1500
eta_mu_m 0.150 0.1500 0.0030 invg 0.1500
eta_zeta 0.150 0.1500 0.0000 invg 0.1500
eta_zeta_for 0.150 0.1500 0.0000 invg 0.1500
eta_tau_l 0.150 0.1500 0.0000 invg 0.1500
eta_tau_c 0.020 0.0200 0.0013 invg 0.0200
eta_g 0.020 0.0200 0.0000 invg 0.0200
eta_pie_for 0.020 0.0200 0.0002 invg 0.0200
eta_y_for 0.020 0.0200 0.0000 invg 0.0200
eta_r_for 0.020 0.0200 0.0011 invg 0.0200
eta_pie_bar 0.020 0.0200 0.0000 invg 0.0200


Log data density [Laplace approximation] is -602.539518.

Error using chol
Matrix must be positive definite.
Error in metropolis_hastings_initialization (line 68)
d = chol(vv);
Error in random_walk_metropolis_hastings (line 62)
[ ix2, ilogpo2, ModelName, MetropolisFolder, fblck, fline, npar, nblck, nruns, NewFile, MAX_nruns, d ] = ...
Error in dynare_estimation_1 (line 782)
feval(options_.posterior_sampling_method,objective_function,options_.proposal_distribution,xparam1,invhess,bounds,dataset_,options_,M_,estim_params_,bayestopt_,oo_);
Error in dynare_estimation (line 89)
dynare_estimation_1(var_list,dname);
Error in esti (line 892)
dynare_estimation(var_list_);
hamideconomy80
 
Posts: 16
Joined: Thu Nov 12, 2015 6:36 am


Return to Dynare contributions and examples

Who is online

Users browsing this forum: No registered users and 4 guests