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Abstract

Are optimism shocks an important source of business cycle fluctuations? Are deficit-financed tax cuts

better than deficit-financed spending to increase output? These questions have been previously studied

using SVARs identified with sign and zero restrictions and the answers have been positive and definite in

both cases. While the identification of SVARs with sign and zero restrictions is theoretically attractive

because it allows the researcher to remain agnostic with respect to the responses of the key variables of

interest, we show that current implementation of these techniques does not respect the agnosticism of the

theory. These algorithms impose additional sign restrictions on variables that are seemingly unrestricted

that bias the results and produce misleading confidence intervals. We provide an alternative and efficient

algorithm that does not introduce any additional sign restriction, hence preserving the agnosticism of the

theory. Without the additional restrictions, it is hard to support the claim that either optimism shocks

are an important source of business cycle fluctuations or deficit-financed tax cuts work best at improving

output. Our algorithm is not only correct but also faster than current ones.
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1 Introduction

Are optimism shocks an important source of business cycle fluctuations? Are deficit-financed tax cuts

better than deficit-financed spending to increase output? Several questions such as these have been

previously studied in the literature using SVARs identified by imposing sign and zero restrictions on

impulse response functions and frequently the answers have been definite. For example, Beaudry et al.

(2011) conclude that optimism shocks play a pivotal role in economic fluctuations and Mountford

and Uhlig (2009) conclude that deficit-financed tax cuts are better for stimulating economic activity.

Researchers combine SVARs with sign and zero restrictions because they allow the identification to

remain agnostic with respect to the responses of key variables of interest. But this is just in theory.

In practice this has not been the case.

We show that the current implementation of these techniques does, in fact, introduce sign restric-

tions in addition to the ones specified in the identification – violating the proclaimed agnosticism.

The additional sign restrictions generate biased impulse response functions and artificially narrow

confidence intervals around them. Hence, the researcher is going to be confident about the wrong

thing. The consequence is that Beaudry et al. (2011) and Mountford and Uhlig (2009) are not as

agnostic as they pretend to be and that their positive and sharp conclusions are misleading and due

to these additional sign restrictions. The heart of the problem is that none of the existing algorithms

correctly draws from the posterior distribution of structural parameters conditional on the sign and

zero restrictions. In this paper we solve this problem by providing an algorithm that draws from the

correct posterior, hence not introducing any additional sign restrictions. Absent the additional sign

restrictions, it is hard to support the claim that either optimism shocks are an important source of

business cycle fluctuations or deficit-financed tax cuts work best at improving output. Once you are

truly agnostic, Beaudry et al.’s (2011) and Mountford and Uhlig’s (2009) main findings disappear.

In particular, we present an efficient algorithm for inference in SVARs identified with sign and zero

restrictions that properly draws from the posterior distribution of structural parameters conditional

on the sign and zero restrictions. We extend the sign restrictions methodology developed by Rubio-

Ramı́rez et al. (2010) to allow for zero restrictions. As was the case in Rubio-Ramı́rez et al. (2010), we

obtain most of our results by imposing sign and zero restrictions on the impulse response functions, but

our algorithm allows for a larger class of restrictions. Two properties of the problem are relevant: (1)

the set of structural parameters conditional on the sign and zero restrictions is of positive measure in

the set of structural parameters conditional on the zero restrictions and (2) the posterior distribution
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of structural parameters conditional on the zero restrictions can be obtained from the product of the

posterior distribution of the reduced-form parameters and the uniform distribution, with respect to

the Haar measure, on the set of orthogonal matrices conditional on the zero restrictions. Drawing

from the posterior of the reduced-form parameters is a well-understood problem. Our key theoretical

contribution is to show how to efficiently draw from the uniform distribution with respect to the Haar

measure on the set of orthogonal matrices conditional on the zero restrictions. This is the crucial step

that allows us to draw from the posterior distribution of structural parameters conditional on the sign

and zero restrictions and that differentiates our paper from existing algorithms.

Currently, the most widely used algorithm is Mountford and Uhlig’s (2009) penalty function ap-

proach (PFA). Instead of drawing from the posterior distribution of structural parameters conditional

on the sign and zero restrictions, the PFA selects a single value of the structural parameters by minimiz-

ing a loss function. We show that this approach has several drawbacks that crucially affect inference.

First, the PFA imposes additional sign restrictions on variables that are seemingly unrestricted −

violating the proclaimed agnosticism of the identification. The additional sign restrictions bias the im-

pulse response functions. Indeed, for a class of sign and zero restrictions we can even formally recover

the additional sign restrictions. Second, because it chooses a single value of structural parameters,

the PFA creates artificially narrow confidence intervals around the impulse response functions that

severely affect inference and the economic interpretation of the results.

We show the capabilities of our algorithm and the problems of the PFA by means of two applications

previously analyzed in the literature using the PFA. The first application is related to optimism shocks.

The aim of Beaudry et al. (2011) is to provide new evidence on the relevance of optimism shocks as an

important driver of macroeconomic fluctuations. In their most basic identification scheme, the authors

claim to be agnostic about the response of consumption and hours to optimism shocks. Beaudry et al.

(2011) conclude that optimism shocks are clearly important for explaining standard business cycle

type phenomena because they increase consumption and hours. Unfortunately, we show that the

positive and sharp responses of consumption and hours reported in Beaudry et al. (2011) are due to

the additional sign restrictions on these variables introduced by the PFA that bias impulse response

functions and create artificially narrow confidence intervals around them. Since these restrictions on

consumption and hours were not part of the identification scheme, the PFA contravenes the proclaimed

agnosticism of the identification. Once you are truly agnostic using our methodology, Beaudry et al.’s

(2011) conclusion is very hard to support.

The second application identifies fiscal policy shocks, as in Mountford and Uhlig (2009), in order to
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analyze the effects of these shocks on economic activity. Government revenue and government spending

shocks are identified by imposing sign restrictions on the fiscal variables themselves as well as imposing

orthogonality to a business cycle shock and a monetary policy shock. The identification pretends to

remain agnostic with respect to the responses of output and other variables of interest to the fiscal

policy shocks. Mountford and Uhlig’s (2009) main finding is that deficit-financed tax cuts work best

among the different fiscal policies aimed at improving output. Analogously to Beaudry et al. (2011), the

PFA introduces additional sign restrictions on the response of output and other variables to fiscal policy

shocks, again conflicting with the proclaimed agnosticism of the identification strategy. As before, the

results obtained in Mountford and Uhlig (2009) are due to biased impulse response functions and the

artificially narrow confidence intervals around them created by the additional sign restrictions. Using

our truly agnostic methodology, we show that it is very difficult to endorse Mountford and Uhlig’s

(2009) results.

There is some existing literature that criticizes Mountford and Uhlig’s (2009) PFA using arguments

similar to the ones listed here. Baumeister and Benati (2010), Benati (2013), and Binning (2013)

propose alternative algorithms, failing to provide any theoretical justification that their algorithms, in

fact, draw from the posterior distribution of structural parameters conditional on the sign and zero

restrictions. Caldara and Kamps (2012) also share our concerns about the PFA, but providing an

alternative algorithm is out of the scope of their paper. In an environment with only sign restrictions,

Baumeister and Hamilton (2013) highlight some related problems and advocate for using priors that

reflect not just sign restrictions but also the relative plausibility of different parameter values within

the allowable set.

Not only does our method correctly draw from the posterior distribution of structural parameters

conditional on the sign and zero restrictions but, at least for the two applications studied in this paper,

it is also much faster than the PFA. Our methodology is between three and ten times faster than the

PFA, depending on the number of sign and zero restrictions. It is also important to note that our

approach can be embedded in a classical or Bayesian framework, although we follow only the latter.

In addition, we wish to state that the aim of this paper is neither to dispute nor to challenge SVARs

identified with sign and zero restrictions. In fact, our methodology preserves the virtues of the pure

sign restriction approach developed in the work of Faust (1998), Canova and Nicoló (2002), Uhlig

(2005), and Rubio-Ramı́rez et al. (2010). Instead, our findings related to optimism and fiscal policy

shocks just indicate that the respective sign and zero restrictions used by Beaudry et al. (2011) and

Mountford and Uhlig (2009) are not enough to accurately identify these particular structural shocks.
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It seems that more restrictions are needed in order to identify such shocks, possibly zero restrictions.

Finally, by characterizing the set of structural parameters conditional on sign and zero restrictions,

our key theoretical contribution will also be of interest to the existing literature such as Faust (1998)

and Barsky and Sims (2011), who identify shocks by maximizing the forecast error variance of certain

variables subject to either sign or zero restrictions.

The paper is organized as follows. Section 2 shows some relevant results in the literature that we

will later demonstrate to be wrong. Section 3 presents the methodology. It is here where we describe

our theoretical contributions and algorithms. Section 4 offers some examples. Section 5 describes

the PFA and highlights its shortcomings. Section 6 presents the first of our applications. Section 7

presents the second application. Section 8 concludes.

2 Being Confident About the Wrong Thing

Beaudry et al. (2011) claim to provide evidence on the relevance of optimism shocks as an important

driver of macroeconomic fluctuations by exploiting sign and zero restrictions using the PFA. More

details about their work will be given in Section 6. At this point it suffices to say that in their

most basic model, Beaudry et al. (2011) use data on total factor productivity (TFP), stock price,

consumption, the real federal funds rate, and hours worked. In a first attempt, they identify optimism

shocks as positively affecting stock prices but being orthogonal to TFP at horizon zero. Hence, the

identification scheme is agnostic about the response of both consumption and hours to optimism

shocks. Figure 1 replicates the first block of Figure 1 in Beaudry et al. (2011). As can be seen, both

consumption and hours worked respond positively and strongly to optimism shocks. The results are

also quite definite because of the narrow confidence intervals.

If right, this figure will clearly endorse the work of those who think that optimism shocks are

relevant for business cycle fluctuations. But this is not the case. In Section 6 we will show that

Figure 1 is wrong. The PFA introduces additional sign restrictions on consumption and hours; hence,

Figure 1 does not correctly reflect the impulse response functions (IRFs) associated with the agnostic

identification scheme described above. When compared with the correctly computed IRFs (as we will

do in Section 6), Figure 1 reports upward-biased responses of consumption and hours worked with

artificially narrow confidence intervals. In that sense, Beaudry et al. (2011) are confident about the

wrong thing.

Mountford and Uhlig (2009) analyze the effects of fiscal policy shocks using SVARs identified with
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Figure 1: Beaudry et al. (2011) Identification 1: Five-Variable SVAR

sign restrictions. Using data on output, consumption, total government spending, total government

revenue, real wages, investment, the interest rate, adjusted reserves, prices of crude materials, and

on output deflator, they identify a government revenue shock and a government spending shock by

imposing sign restrictions on the fiscal variables themselves as well as imposing orthogonality to a

generic business cycle shock and a monetary policy shock. No sign restrictions are imposed on the

responses of output, consumption, and investment to fiscal policy shocks. Thus, the identification

remains agnostic with respect to the responses of these key variables of interest to fiscal policy shocks.

Using the identified fiscal policy shocks, they report many different results that will be analyzed in

Section 7. At this stage we want to focus on their comparison of fiscal policy scenarios. They compare

deficit-spending shocks, where total government spending rises by 1 percent and total government

revenue remains unchanged during the four quarters following the initial shock, with deficit-financed

tax cut shocks, where total government spending remains unchanged and total government revenue

falls by 1 percent during the four quarters following the initial shock. More details about the fiscal
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policy scenarios will be provided in Section 7.

Figure 2: Mountford and Uhlig (2009) Cumulative Fiscal Multipliers

Figure 2 replicates Figure 13 in Mountford and Uhlig (2009). The figure shows that the median

cumulative discounted IRF of output to a deficit-spending shock becomes negative after a few periods,

while it is always positive in the case of a deficit-financed tax cut shock. It also shows narrow confidence

intervals. If right, this figure will strongly support the work of those who think that deficit-financed

tax cuts work best to improve output. But this is not the case. In Section 7 we will show that

Figure 2 is, indeed, wrong. As is the case with optimism shocks, the PFA introduces additional sign

restrictions on the response of output to the different fiscal policy shocks analyzed; hence, Figure 2

does not correctly reflect the IRFs associated with the agnostic identification scheme described above.

When compared with the correctly computed IRFs (as we will do in Section 7), Figure 2 reports biased

impulse response functions and artificially narrow confidence intervals. In that sense, Mountford and

Uhlig (2009) are also confident about the wrong thing.
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3 Our Methodology

This section is organized into three parts. First, we describe the model. Second, we review the efficient

algorithm for inference using sign restrictions on IRFs developed in Rubio-Ramı́rez et al. (2010). Third,

we extend this algorithm to also allow for zero restrictions. As mentioned, the algorithm proposed by

Rubio-Ramı́rez et al. (2010) and our extension can be embedded in a classical or Bayesian framework.

In this paper we follow the latter.

3.1 The Model

Consider the structural vector autoregression (SVAR) with the general form, as in Rubio-Ramı́rez

et al. (2010)

y′tA0 =

p∑
`=1

y′t−`A` + c + ε′t for 1 ≤ t ≤ T, (1)

where yt is an n×1 vector of endogenous variables, εt is an n×1 vector of exogenous structural shocks,

A` is an n×n matrix of parameters for 0 ≤ ` ≤ p with A0 invertible, c is a 1×n vector of parameters,

p is the lag length, and T is the sample size. The vector εt, conditional on past information and the

initial conditions y0, ...,y1−p, is Gaussian with mean zero and covariance matrix In, the n×n identity

matrix. The model described in equation (1) can be written as

y′tA0 = x′tA+ + ε′t for 1 ≤ t ≤ T, (2)

where A′+ =
[

A′1 · · · A′p c′
]

and x′t =
[

y′t−1 · · · y′t−p 1
]

for 1 ≤ t ≤ T . The dimension of

A+ is m× n, where m = np+ 1. The reduced-form representation implied by equation (2) is

y′t = x′tB + u′t for 1 ≤ t ≤ T, (3)

where B = A+A−10 , u′t = ε′tA
−1
0 , and E [utu

′
t] = Σ = (A0A

′
0)
−1. The matrices B and Σ are the

reduced-form parameters, while A0 and A+ are the structural parameters.

Most of the literature imposes restrictions on the IRFs. As we will see by the end of this section,

the theorems and algorithms described in this paper allow us to consider a more general class of

restrictions. In any case, we will use IRFs to motivate our theory. Thus, we now characterize them.

We begin by introducing IRFs at finite horizons and then do the same at the infinite horizon. Once

the IRFs are defined, we will show how to impose sign restrictions. In the finite horizon case, we have
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the following definition.

Definition 1. Let (A0,A+) be any value of structural parameters, the IRF of the i-th variable to the

j-th structural shock at finite horizon h corresponds to the element in row i and column j of the matrix

Lh (A0,A+) =
(
A−10 J′FhJ

)′
,

where

F =


A1A

−1
0 In · · · 0

...
...

. . .
...

Ap−1A
−1
0 0 · · · In

ApA
−1
0 0 · · · 0

 and J =


In

0
...

0

 .

In the infinite horizon case, we assume the i-th variable is in first differences.

Definition 2. Let (A0,A+) be any value of structural parameters, the IRF of the i-th variable to the

j-th structural shock at the infinite horizon (sometimes called the long-run IRF) corresponds to the

element in row i and column j of the matrix

L∞ (A0,A+) =

(
A′0 −

p∑
`=1

A′`

)−1
.

It is important to note that Lh (A0Q,A+Q) = Lh (A0,A+) Q for 0 ≤ h ≤ ∞ and Q ∈ O(n),

where O(n) denotes the set of all orthogonal n× n matrices.

3.2 Algorithm for Sign Restrictions

Let us assume that we want to impose sign restrictions at several horizons, both finite and infinite. It

is convenient to stack the IRFs for all the relevant horizons into a single matrix of dimension k × n,

which we denote by f (A0,A+). For example, if the sign restrictions are imposed at horizon zero and

infinity, then

f (A0,A+) =

 L0 (A0,A+)

L∞ (A0,A+)

 ,
where k = 2n in this case.

8



Sign restrictions on those IRFs can be represented by matrices Sj for 1 ≤ j ≤ n, where the number

of columns in Sj is equal to the number of rows in f (A0,A+). Usually, Sj will be a selection matrix

and thus will have exactly one non-zero entry in each row, though the theory will work for arbitrary

Sj. If the rank of Sj is sj, then sj is the number of sign restrictions on the IRFs to the j-th structural

shock. The total number of sign restrictions will be s =
∑n

j=1 sj. Let ej denote the j-th column of In,

where In is the identity matrix of dimension n× n.

Definition 3. Let (A0,A+) be any value of structural parameters. These parameters satisfy the sign

restrictions if and only if Sjf (A0,A+) ej > 0, for 1 ≤ j ≤ n.

From equation (2), it is easy to see that if (A0,A+) is any set of structural parameters and Q is any

element of O(n), the set of orthogonal matrices, then (A0,A+) and (A0Q,A+Q) are observationally

equivalent. It is also well known, e.g., Geweke (1986), that a SVAR with sign restrictions is not

identified, since for any (A0,A+) that satisfy the sign restrictions, (A0Q,A+Q) will also satisfy the

sign restrictions for all orthogonal matrices Q sufficiently close to the identity. Therefore, the set of

structural parameters conditional on the sign restrictions will be an open set of positive measure in the

set of all structural parameters. This suggests the following algorithm for sampling from the posterior

of structural parameters conditional on the sign restrictions.

Algorithm 1.

1. Draw (A0,A+) from the unrestricted posterior.

2. Keep the draw if the sign restrictions are satisfied.

3. Return to Step 1 until the required number of draws from the posterior of structural parameters

conditional on the sign restrictions has been obtained.

By unrestricted posterior we mean the posterior distribution of all structural parameters before

any identification scheme is considered. The only obstacle to implementing Algorithm 1 is an efficient

technique to accomplish the first step. In the next subsection we develop a fast algorithm that produces

independent draws from the unrestricted posterior.

9



3.3 Draws from the Unrestricted Posterior

The algorithm developed in this section will require draws of orthogonal matrices from the uniform

distribution with respect to the Haar measure on O(n).1 Faust (1998), Canova and Nicoló (2002), Uhlig

(2005), and Rubio-Ramı́rez et al. (2010) propose algorithms to draw from that distribution. However,

Rubio-Ramı́rez et al.’s (2010) algorithm is the only computationally feasible one for moderately large

SVAR systems (e.g., n > 4).2 Rubio-Ramı́rez et al.’s (2010) results are based on the following theorem.

Theorem 1. Let X be an n × n random matrix with each element having an independent standard

normal distribution. Let X = QR be the QR decomposition of X.3 The random matrix Q has the

uniform distribution with respect to the Haar measure on O(n).

Proof. The proof follows directly from Stewart (1980).

With this result in hand, we develop an efficient algorithm to obtain independent draws from the

unrestricted posterior using draws from the posterior of the reduced-form parameters. If the prior on

the reduced-form is from the family of multivariate normal inverse Wishart distributions, then the

posterior will be from the same family and there are efficient algorithms for obtaining independent

draws from this distribution. Such priors are called conjugate. The popular Minnesota prior will be

from this family. However, we need draws from the unrestricted posterior, not from the posterior of

reduced-form parameters. We now show that there is a way to convert draws from the posterior of

the reduced-form parameters, together with a draw from the uniform distribution with respect to the

Haar measure on O(n), to draws from the unrestricted posterior.

Let g denote the mapping from the structural parameters to the reduced-form parameters given

by g(A0,A+) =
(
A+A−10 , (A0A

′
0)
−1). Let h be any continuously differentiable mapping from the set

of symmetric positive definite n×n matrices into the set of n×n matrices such that h(X)′h(X) = X.

For instance, h(X) could be the Cholesky decomposition of X such that h(X) is upper triangular with

positive diagonal. Alternatively, h(X) could be the square root of X, which is the unique symmetric

and positive definite matrix Y such that YY = Y′Y = X. Using h, we can define a function ĥ from

the product of the set of reduced-form parameters with the set of orthogonal matrices into the set of

structural parameters by ĥ(B,Σ,Q) = (h(Σ)−1Q,Bh(Σ)−1Q). Note that g(ĥ(B,Σ,Q)) = (B,Σ) for

1The Haar measure is the unique measure on O(n) that is invariant under rotations and reflections such that the
measure of all of O(n) is one. See Krantz and Parks (2008) for more details.

2See Rubio-Ramı́rez et al. (2010) for details.
3With probability one the random matrix X will be non-singular and so the QR decomposition will be unique if the

diagonal of R is normalized to be positive.
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every Q ∈ O(n). The function ĥ will be continuously differentiable with a continuously differentiable

inverse.

Given a prior density π on the reduced-form parameters, together with the uniform distribution

with respect to the Haar measure on O(n), we can use ĥ to draw from the unrestricted posterior. At

the same time, ĥ induces a prior on the unrestricted structural parameters. The induced prior density

will be

π̂ (A0,A+) = π (B,Σ)
∣∣∣det(ĥ′ (B,Σ,Q)

)∣∣∣−1 ,
where (B,Σ,Q) = ĥ−1(A0,A+). Though we will not explicitly use it,

∣∣∣det(ĥ′ (B,Σ,Q)
)∣∣∣ = 2−

n(n+1)
2 |det (Σ)|−

2n+m+1
2 .

The following theorem formalizes the above argument.

Theorem 2. Let π be a prior density on the reduced-form parameters. If (B,Σ) is a draw from

the reduced-form posterior and Q is a draw from the uniform distribution with respect to the Haar

measure on O(n), then ĥ(B,Σ,Q) is a draw from the unrestricted posterior with respect to the prior

π̂ (A0,A+) = π (B,Σ)
∣∣∣det(ĥ′ (B,Σ,Q)

)∣∣∣−1.
Proof. The proof follows from the chain rule and the fact that if (A0,A+) = ĥ(B,Σ,Q), then the

likelihood of the data given the structural parameters (A0,A+) is equal to the likelihood of the data

given the reduced-form parameters (B,Σ).

The following algorithm shows how to use this theorem together with Algorithm 1 to independently

draw from the posterior of structural parameters conditional on the sign restrictions

Algorithm 2.

1. Draw (B,Σ) from the posterior distribution of the reduced-form parameters.

2. Use Theorem 1 to draw an orthogonal matrix Q from the uniform distribution with respect to the

Haar measure on O(n).

3. Because of Theorem 2, ĥ(B,Σ,Q) = (h(Σ)−1Q,Bh(Σ)−1Q) will be a draw from the unrestricted

posterior.

4. Keep the draw if Sjf (h(Σ)−1Q,Bh(Σ)−1Q) ej > 0 are satisfied for 1 ≤ j ≤ n.
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5. Return to Step 1 until the required number of draws from the posterior of structural parameters

conditional on the sign restrictions has been obtained.

As mentioned above, as long as the reduced-form prior is multivariate normal inverse Wishart,

we have an efficient algorithm to obtain the independent draws required in step one of Algorithm 2.

Theorem 1 gives an efficient algorithm to obtain the independent draws required in step two and step

three is justified by Theorem 2. In practice, h(Σ) is normally the Cholesky decomposition Σ such

that h(Σ) is upper triangular with positive diagonal. In any case, Theorem 2 also shows that other

mappings are possible.

3.4 A Recursive Formulation of Theorem 1

At this point it is useful to understand how Theorem 1 works, and more important, how it can be

implemented recursively. Let X = QR be the QR decomposition of X and let xj = Xej and qj = Qej

for 1 ≤ j ≤ n. The qj can be obtained recursively using the Gram-Schmidt process, which is given by

qj =

(
In −Qj−1Q

′
j−1
)
xj∣∣∣∣(In −Qj−1Q′j−1
)
xj
∣∣∣∣ =

Nj−1N
′
j−1xj∣∣∣∣Nj−1N′j−1xj

∣∣∣∣ = Nj−1
N′j−1xj∣∣∣∣N′j−1xj∣∣∣∣ for 1 ≤ j ≤ n,

where || || is the Euclidean metric, Qj−1 =
[
q1 · · · qj−1

]
, and Nj−1 is any n × (n − j + 1) matrix

whose columns form an orthonormal basis for the null space of Q′j−1.
4 We follow the convention

that Q0 is the n × 0 empty matrix, Q0Q
′
0 is the n × n zero matrix, and N0 is the n × n identity

matrix. Geometrically, qj is the projection of xj onto the null space of Q′j−1 normalized to be of unit

length. Alternatively, N′j−1xj is a standard normal draw from Rn−j+1 and N′j−1xj/ ‖ N′j−1xj ‖ is

a draw from the uniform distribution on the unit sphere centered at the origin in Rn−j+1, which is

denoted by Sn−j. Because the columns of Nj−1 are orthonormal, multiplication by Nj−1 is a rigid

transformation of Rn−j+1 into Rn. From this alternative geometric representation, one can see why

Theorem 1 produces uniform draws from O(n). For 1 ≤ j ≤ n, the vector qj, conditional on Qj−1,

is a draw from the uniform distribution on Sn−j. While it is more efficient to obtain Q in a single

step via the QR decomposition, the fact that it can be obtained recursively will be of use when there

are zero restrictions.5 Furthermore, note that the recursive formulation of Theorem 1 allows a faster

4The formula just described to obtain qj recursively for 1 ≤ j ≤ n implicitly imposes the normalization that the
diagonal of R is positive.

5While draws from O(n) can be obtained recursively by drawing from Sn−j for 1 ≤ j ≤ n, O(n) is not topologically
equivalent to a product of spheres, i.e., there does not exist a continuous bijection from O(n) to

∏n
j=1 S

n−j .
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implementation of Algorithm 2 in those cases in which the researcher is interested in identifying less

than n shocks.

3.5 Algorithm with Sign and Zero Restrictions

Let us now assume that we also want to impose zero restrictions at several horizons, both finite and

infinite. Similar to the case of sign restrictions, we use the function f (A0,A+) to stack the IRFs at

the desired horizons. The function f (A0,A+) will contain IRFs for both sign and zero restrictions.

Zero restrictions can be represented by matrices Zj for 1 ≤ j ≤ n, where the number of columns in

Zj is equal to the number of rows in f (A0,A+). If the rank of Zj is zj, then zj is the number of zero

restrictions associated with the j-th structural shock. The total number of zero restrictions will be

z =
∑n

j=1 zj.

Definition 4. Let (A0,A+) be any value of structural parameters. These parameters satisfy the zero

restrictions if and only if Zjf (A0,A+) ej = 0 for 1 ≤ j ≤ n.

We can no longer use Algorithm 1 for sampling from the posterior of structural parameters condi-

tional on the sign and the zero restrictions, since the set of structural parameters conditional on the

zero restrictions will be of measure zero in the set of all structural parameters. As we show below, as

long as there are not too many zero restrictions, we will be able to directly obtain draws of structural

parameters conditional on the zero restrictions. This is important for the same reasons used to moti-

vate Algorithm 1. The set of structural parameters conditional on the sign and the zero restrictions

will be of positive measure in the set of structural parameters conditional on the zero restrictions.

Thus, we will be able to use the following algorithm for sampling from the posterior of structural

parameters conditional on the sign and the zero restrictions.

Algorithm 3.

1. Draw (A0,A+) from the posterior of structural parameters conditional on the zero restrictions.

2. Keep the draw if the sign restrictions are satisfied.

3. Return to Step 1 until the required number of draws from the posterior of structural parameters

conditional on the sign and the zero restrictions has been obtained.
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As was the case before, the only obstacle to implementing Algorithm 3 is an efficient technique to

accomplish the first step. We now present an algorithm that produces independent draws from the

posterior of structural parameters conditional on the zero restrictions.

3.6 Draws from the Posterior Conditional on the Zero Restrictions

From Definition 3.5 it is easy to see that the difficulty comes from the fact that the zero restrictions

impose non-linear constraints on the structural parameters (A0,A+). In this section we transform these

non-linear constraints on the structural parameters (A0,A+) into linear constraints on the orthogonal

matrix Q. We first need to show that for any value of the structural parameters (A0,A+), we can

find an orthogonal matrix Q such that (A0Q,A+Q) satisfies the zero restrictions. Because f has the

property that f(A0Q,A+Q) = f(A0,A+)Q, zero restrictions on the IRFs of observationally equivalent

structural parameters can be converted into linear restrictions on the columns of the orthogonal matrix

Q. To see this, note that

Zjf (A0Q,A+Q) ej = Zjf (A0,A+) Qej = Zjf (A0,A+) qj

for 1 ≤ j ≤ n. Therefore, the zero restrictions associated with the j-th structural shock can be ex-

pressed as linear restrictions on the j-th column of the orthogonal matrix Q. Thus, the zero restrictions

will hold if and only if

Zjf (A0,A+) qj = 0 (4)

for 1 ≤ j ≤ n. In addition to equation (4), we need the resulting matrix Q to be orthonormal. This

condition imposes extra linear constraints on the columns of Q.

Using these two insights, the next theorem shows when and how, given any value of the structural

parameters (A0,A+), we can find an orthogonal matrix Q such that (A0Q,A+Q) satisfies the zero

restrictions.

Theorem 3. Let (A0,A+) be any value of structural parameters. The structural parameters (A0Q,A+Q),

where Q is orthogonal, satisfy the zero restrictions if and only if ‖ qj ‖= 1 and

Rj (A0,A+) qj = 0, (5)
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for 1 ≤ j ≤ n, where

Rj (A0,A+) =

Zjf (A0,A+)

Q′j−1

 .
Furthermore, if the rank of Zj is less than or equal to n − j, then there will be non-zero solutions of

equation (5) for all values of Qj−1.

Proof. The first statement follows easily from the fact that (A0Q,A+Q) satisfies the zero restrictions

if and only if Zjf (A0,A+) qj = 0 and the matrix Q is orthogonal if and only if ‖ qj ‖= 1 and

Q′j−1qj = 0. The second statement follows from the fact that the rank of Rj (A0,A+) is less than or

equal to zj + j − 1. Thus, if zj ≤ n− j, then the rank of Rj (A0,A+) will be strictly less than n and

there will be non-zero solutions of equation (5).

Whether there will be non-zero solutions of equation (5) clearly depends on the ordering of the

equations (columns) of the original system, which is arbitrary. We shall only consider zero restrictions

such that the equations of the original system can be ordered so that zj ≤ n − j. Because, when

considering zero restrictions together with sign restrictions, one usually only wants to have a small

number of zero restrictions, this condition will almost always be satisfied in practice. If it is the case

that the system can be ordered so that zj ≤ n−j, then Theorem 3 implies that for any value (A0,A+) of

the structural parameters one can always find an orthogonal matrix Q such that (A0Q,A+Q) satisfies

the zero restrictions. This implies that zero restrictions impose no constraints on the reduced-form

parameters but will impose constraints on the orthogonal matrix Q.

Next, we show how to use the results in Theorem 3 to, given a value of the structural parameters

(A0,A+), obtain draws from the uniform distribution with respect to the Haar measure on O(n)

conditional on (A0Q,A+Q) satisfying the zero restrictions.

Theorem 4. Let 1 ≤ j ≤ n, and let Zj represent zero restrictions with the equations of the system

given by (1) ordered so that zj ≤ n − j. Let (A0,A+) be any value of the structural parameters. Let

Q be obtained as follows.

1. Let j = 1.

2. Find a matrix Nj−1 whose columns form an orthonormal basis for the null space of Rj(A0,A+).

3. Draw xj from the standard normal distribution on Rn.
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4. Let qj = Nj−1
(
N′j−1xj/ ‖ N′j−1xj ‖

)
.6

5. If j = n stop; otherwise, let j = j + 1 and move to Step 2.

The random matrix Q has the uniform distribution with respect to the Haar measure on O(n) condi-

tional on (A0Q,A+Q) satisfying the zero restrictions.

Proof. By Theorem 3, Q will be orthogonal and (A0Q,A+Q) will satisfy the zero restrictions. Let

nj be the number of columns in Nj−1. For almost all (A0,A+), nj = n − j − zj + 1 ≥ 1. So, qj,

conditional on Qj−1, A0, and A+, is a draw from the uniform distribution on a unit sphere centered

at the origin whose dimension is n− j − zj. Thus the distribution of Q will be uniform with respect

to the Haar measure on O(n) conditional on (A0Q,A+Q) satisfying the zero restrictions.

It should be clear from Theorem 4 that for each (A0,A+) there are many orthogonal matrices Q

such that (A0Q,A+Q) satisfies the zero restrictions and that the particular orthogonal matrix Q to

be drawn will depend on the particular draw of xj for 1 ≤ j ≤ n.

The fact that Theorem 4 shows how to obtain draws from the uniform distribution with respect to

the Haar measure on O(n) conditional on the zero restrictions is the key theoretical contribution of this

paper. This contribution allows us to obtain posterior draws of the structural parameters conditional

on the zero restrictions.

Theorem 5. Let π be a prior density on the reduced-form parameters. If (B,Σ) is a draw from

the reduced-form posterior and Q is a draw from the uniform distribution with respect to the Haar

measure on O(n) conditional on ĥ (B,Σ,Q) = (h(Σ)−1Q,Bh(Σ)−1Q) satisfying the zero restrictions

as in Theorem 4, then ĥ(B,Σ,Q) is a draw from the posterior of the structural parameters with respect

to the prior π̂(A0,A+) = π (B,Σ)
∣∣∣det(ĥ′ (B,Σ,Q)

)∣∣∣−1, conditional on the zero restrictions.

Proof. The proof follows from the chain rule and the fact that if (A0,A+) = ĥ(B,Σ,Q), then the

likelihood of the data given the structural parameters (A0,A+) is equal to the likelihood of the data

given the reduced-form parameters (B,Σ).

Combining Theorem 4 and Theorem 5 with Algorithm 3, we obtain the following algorithm for

making independent draws from the posterior distribution conditional on the sign and zero restrictions

holding.

6Alternatively, we could draw yj from the standard normal distribution on Rnj and get qj = Nj−1yj/ ‖ yj ‖, where
nj is the number of columns in Nj−1, which is a positive number. This implementation will result in an even faster
procedure.

16



Algorithm 4.

1. Draw (B,Σ) from the posterior distribution of the reduced-form parameters.

2. Use Theorem 4 to draw an orthogonal matrix Q such that ĥ (B,Σ,Q) = (h(Σ)−1Q,Bh(Σ)−1Q)

satisfies the zero restrictions.

3. Keep the draw if Sjf(h(Σ)−1Q,Bh(Σ)−1Q)ej > 0 are satisfied for 1 ≤ j ≤ n.

4. Return to Step 1 until the required number of draws from the posterior distribution conditional

on the sign and zero restrictions has been obtained.

From Algorithm 4 it is easy to see that, for each (B,Σ), there is a whole distribution of IRFs such

that the restrictions hold. This observation is essential in interpreting the results in Sections 6 and

7. As was the case before, in practice, h(Σ) is normally the Cholesky decomposition Σ such that

h(Σ) is upper triangular with positive diagonal. In any case, Theorem 5 shows that other mappings

are possible. Finally, the recursive structure of Theorem 4 allows for the recursive implementation of

Algorithm 4, which increases efficiency for cases in which the number of shocks to be identified is lower

than the number of variables.

3.7 Efficiency and Normalization

Because the qj’s that form the orthogonal matrix Q in step 2 of Algorithm 4 are obtained recursively

when applying Theorem 4, it is possible to check if the sign restrictions are satisfied as we are drawing

them. This allows us to combine steps 2 and 3 in Algorithm 4 and have an early exit back to step 1 as

soon as we have a draw of qj that does not satisfy Sjf (h(Σ)−1,Bh(Σ)−1) qj > 0. In larger problems

in which we can order the equations so that those shocks that impose the highest number of sign

restrictions on IRFs appear first, this modification can result in greater efficiency.

In implementing this modification, it is critical that upon finding a qj that violates the sign

restrictions, one exits back to step 1 and obtains a new draw of the reduced-form parameters. It is

tempting to implement the algorithm by simply making draws of qj until we find one that satisfies

the sign restrictions. However, this will usually lead to draws from the incorrect distribution. The

easiest way to see this is to note that some draws of the reduced-form parameters may have large sets

of orthogonal Q that satisfy both the zero and sign restrictions, while other reduced-form parameters
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may have small sets of orthogonal Q that satisfy both the zero and sign restrictions.7 This difference

should be reflected in the posterior draws, but if one draws qj until one is accepted, this will not be

true.

While it is not permissible to draw orthogonal matrices Q until acceptance, it is permissible to

draw a fixed number of orthogonal matrices Q for each reduced-form draw and then keep all that

satisfy the sign restrictions. However, because drawing from the reduced-form parameters is usually

very efficient, it is often best to draw one orthogonal matrix Q for each reduced-form draw. One

instance in which it is always more efficient to make multiple draws of the orthogonal matrix Q is in

the case of normalization.

If for the j-th shock there are no sign restrictions, then any qj will trivially satisfy the sign

restrictions. In this case, if qj is the draw of the j-th column of the orthogonal matrix Q, then both qj

and −qj will satisfy the sign restrictions. If for the j-th shock there is exactly one sign restriction, then

for any qj either qj or −qj will satisfy the sign restriction. In this case, if qj is the draw of the j-th

column of the orthogonal matrix Q and qj does not satisfy the sign restriction, then −qj will. If for

the j-th shock there is more than one sign restriction, then it may be the case that neither qj nor −qj

will satisfy the sign restrictions. In this case, if qj is the draw of the j-th column of the orthogonal

matrix Q and qj does not satisfy the sign, then −qj may or may not satisfy the sign restrictions.

Nevertheless, it will always improve efficiency to check both qj and −qj against the sign restrictions

and keep all that satisfy the restrictions. Furthermore, the more shocks there are with zero or one sign

restriction, the greater the efficiency gains.

If there are no sign restrictions on the j-th shock, and no additional normalization rule is added,

we say that the shock is unnormalized. Unnormalized shocks will always have IRFs with distributions

that are symmetric about zero. Thus, if we are interested in making inferences about an IRF, then the

shock associated with such an IRF should always be normalized. A single sign restriction on a shock is

a normalization rule. See Waggoner and Zha (2003) for a discussion of normalization in SVAR models

and suggestions for a generic normalization rule. Finally, it is important to remember that, while it

is true that normalization rules do not change the statistical properties of the reduced-form, it is the

case that different normalization rules can lead to different economic interpretations.

7This is very different from zero restrictions only. For any reduced-form draw, the set of orthogonal Q that satisfies
only the zero restrictions lies on a unit sphere centered at the origin of dimension n− j − zj , which are all of the same
size.
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3.8 A General Class of Restrictions

It is worth noting that although we have used the function f (A0,A+) to stack the IRFs, the theo-

rems and algorithms in this paper work for any f (A0,A+) that satisfies the conditions described in

Rubio-Ramı́rez et al. (2010). Hence, our theory works for any f (A0,A+) that is admissible, regular,

and strongly regular as defined below.

Condition 1. The function f (A0,A+) is admissible if and only if for any Q ∈ O(n), f (A0Q,A+Q) =

f (A0,A+) Q.

Condition 2. The function f (A0,A+) is regular if and only if its domain is open and the transfor-

mation is continuously differentiable with f ′ (A0,A+) of rank kn.

Condition 3. The function f (A0,A+) is strongly regular if and only if it is regular and it is dense

in the set of k × n matrices.

This highlights the fact that our theorems and algorithms allow us to consider two additional classes

of restrictions (in addition to restrictions on IRFs). First, there are the commonly used linear re-

strictions on the structural parameters themselves (A0,A+). This class of restrictions includes the

triangular identification as described by Christiano et al. (1996) and the non-triangular identification

as described by Sims (1986), King et al. (1994), Gordon and Leeper (1994), Bernanke and Mihov

(1998), Zha (1999), and Sims and Zha (2006). Second, there are the linear restrictions on the Q’s

themselves. For instance, in the case of the latter restrictions, one can define f (A0,A+) = In. This

final class will be useful in comparing our methodology with some existing methods of inference.

4 Example

In this section we present an example to illustrate how to use our theorems and algorithms. We assume

some sign and zero restrictions and a draw from the posterior of the reduced-form parameters in order

to show how Algorithm 2 allows us to draw a Q conditional on the sign restrictions, while Algorithm 4

allows us to draw a Q conditional on the sign and the zero restrictions. Consider a four-variable SVAR

with one lag. The dimension and lag length of the SVAR are totally arbitrary. In this section, we will
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assume that h(Σ) is normally the Cholesky decomposition Σ such that h(Σ) is upper triangular with

positive diagonal.

4.1 A Draw from the Posterior of the Reduced-Form Parameters

Let the following B and Σ be a particular draw from the posterior of the reduced-form parameters

B =


0.7577 0.7060 0.8235 0.4387

0.7431 0.0318 0.6948 0.3816

0.3922 0.2769 0.3171 0.7655

0.6555 0.0462 0.9502 0.7952

 and Σ =


0.0281 −0.0295 0.0029 0.0029

−0.0295 3.1850 0.0325 −0.0105

0.0029 0.0325 0.0067 0.0054

0.0029 −0.0105 0.0054 0.1471

 .

Let the structural parameters be (A0,A+) = (h(Σ)−1,Bh(Σ)−1), hence

A0 =


5.9655 0.5911 −1.4851 −0.0035

0 0.5631 −0.1455 0.0321

0 0 12.9098 −2.2906

0 0 0 2.6509

 and A+ =


4.5201 0.8454 9.4033 −0.7034

4.4330 0.4572 7.8615 −0.5815

2.3397 0.3878 3.4710 1.3104

3.9104 0.4135 11.2867 −0.0694

 .

Assume that we want to impose restrictions on the IRFs at horizon zero, two, and infinity. Hence, we

compute the respective IRFs and we stack them using function f (A0,A+) as follows
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f (A0,A+) =


L0(A0,A+)

L2(A0,A+)

L∞(A0,A+)

 =



0.1676 0 0 0

−0.1760 1.7760 0 0

0.0173 0.0200 0.0775 0

0.0173 −0.0042 0.0669 0.3772

0.1355 1.9867 0.1828 0.5375

0.0259 1.3115 0.0828 0.2882

0.1377 2.1813 0.2131 0.6144

0.1069 2.0996 0.1989 0.6281

0.1091 −0.3783 −0.0847 −0.2523

−0.1170 1.2928 −0.0599 −0.2201

−0.0422 −0.7342 0.0006 −0.1695

−0.0575 −1.1662 0.0362 0.2577



.

4.2 The Restrictions

Assume that we want to impose a negative sign restriction at horizon two on the response of the third

variable to the second structural shock, a positive sign restriction at horizon two on the response of

the fourth variable to the second structural shock, a negative sign restriction at horizon zero on the

response of the second variable to the third structural shock, a positive sign restriction at horizon zero,

two, and infinity on the response of the first variable to the fourth structural shock, a zero restriction

at horizon zero on the response of the first and third variables to the first structural shock, and a zero

restriction at horizon infinity on the response of the fourth variable to the second structural shock.

These restrictions can be enforced using the matrices Sj and Zj for 1 ≤ j ≤ n

S2 =

 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

 ,S3 =
[

0 −1 0 0 0 0 0 0 0 0 0 0
]
,

S4 =


1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

 ,Z1 =

 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

 ,

and Z2 =
[

0 0 0 0 0 0 0 0 0 0 0 1
]
.
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Since there are no sign restrictions associated with the first structural shock, we do not need to specify

S1. Similarly, we do not specify Z3 and Z4.

4.3 Sign Restrictions

Let us start by discussing the sign restrictions that can be enforced using Algorithm 2. Assume that

we draw

X =


0.8110 −1.8301 −1.0833 −1.7793

−1.9581 0.5305 −1.5108 1.0477

1.6940 0.4499 −1.8539 1.0776

−0.6052 −0.2418 −1.8677 −0.1271

 ,

where each element is drawn from an independent standard normal distribution. Then, the orthogonal

matrix Q associated with the QR decomposition is

Q =


0.2917 −0.8809 −0.2226 0.2991

−0.7044 0.0644 −0.4764 0.5223

0.6094 0.4264 −0.6430 0.1828

−0.2177 −0.1953 −0.5569 −0.7774

 .

Note that given Q the sign restrictions are satisfied since

S2f (A0,A+) q2 =
[

0.0100 0.0032
]′
> 0,S3f (A0,A+) q3 = 0.8068 > 0,

and S4f (A0,A+) q4 =
[

0.0501 0.6937 0.0157
]′
> 0.

Nevertheless, there is no reason to expect the zero restrictions to be satisfied for such Q. Indeed, in

this case they do not hold,

Z1f (A0,A+) q1 =
[

0.0489 0.0382
]′
6= 0, and Z2f (A0,A+) q2 = −0.0594 6= 0.
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4.4 Sign and Zero Restrictions

We now illustrate how to find a Q that satisfies the sign and zero restrictions based on Algorithm 4.

Assume that in step 1 we use our draw from the posterior of the reduced-form parameters. Then, step

2 of Algorithm 4 is as follows.

1. Let j = 1.

2. Find a matrix Nj−1 whose columns form an orthonormal basis for the null space of Rj(A0,A+)

N0 =

 0 −0.9682 0.2502 0

0 0 0 1.0000

′ .
3. Draw xj from the standard normal distribution on Rn, x1 =

[
0.4395 −0.1190 −0.9354 0.0464

]′
.

4. Let qj = Nj−1
(
N′j−1xj/ ‖ N′j−1xj ‖

)
, q1 =

[
0 0.9018 −0.2330 0.3638

]′
.

5. If j = n stop; otherwise, let j = j + 1 and move to step 2.

Thus, if we repeat these steps until j equals 5, we obtain the following matrices:

N1 =


−0.2648 0.9609

0.1095 −0.0053

0.9068 0.2271

0.3093 0.1586

 ,N2 =


0.1704 −0.0322

0.2180 −0.3697

0.9582 0.0188

0.0733 0.9284

 , and N3 =


−0.0854

−0.4203

−0.2913

0.8551

 .

x2 =


−0.6711

1.5332

−0.1836

0.3509

 ,x3 =


−0.5941

0.5901

−1.4499

−0.2632

 , and x4 =


0.6713

−0.4112

0.7989

−0.0868

 .
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q2 =


−0.9849

0.0498

0.1651

−0.0177

 ,q3 =


−0.1509

−0.0871

−0.9130

−0.3689

 , and q4 =


0.0854

0.4203

0.2913

−0.8551

 .

In this case, the sign restrictions also hold

S2f (A0,A+) q2 =
[

0.0027 0.0210
]′
> 0,S3f (A0,A+) q3 = 0.1281 > 0,

and S4f (A0,A+) q4 =
[

0.0143 0.4401 0.0414
]′
> 0.

Clearly, the fact that the sign restrictions hold depends on the draw of xj for 1 ≤ j ≤ n.

5 The Mountford and Uhlig Methodology

In this section, we discuss the PFA with sign and zero restrictions developed by Mountford and Uhlig

(2009). First, we describe the algorithm. Second, we highlight how it selects one particular orthogonal

matrix Q instead of drawing from the conditional uniform distribution derived in Subsection 3.5. We

also analyze the consequences of this drawback. Third, we formally show how selecting a particular

orthogonal matrix Q imposes additional sign restrictions on variables that are seemingly unrestricted.

5.1 Penalty Function Approach with Sign and Zero Restrictions

Let (A0,A+) be any draw of the structural parameters. Consider a case where the identification of the

j-th structural shock restricts the IRF of a set of variables indexed by Ij,+ to be positive and the IRF

of a set of variables indexed by Ij,− to be negative, where Ij,+ and Ij,− ⊂ {0, 1, . . . , n}. Furthermore,

assume that the restrictions on variable i ∈ Ij,+ are enforced during Hi,j,+ periods and the restrictions

on variable i ∈ Ij,− are enforced during Hi,j,− periods. In addition to the sign restrictions, assume

that the researcher imposes zero restrictions on the IRFs to identify the j-th structural shock. Let

Zj and f (A0,A+) denote the latter. The PFA finds an orthogonal matrix Q̄∗ =
[
q̄∗1 · · · q̄∗n

]
such

that the IRFs come close to satisfying the sign restrictions, conditional on the zero restrictions being
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satisfied, according to a loss function.8 In particular, for 1 ≤ j ≤ n, this approach solves the following

optimization problem

q̄∗j = argminq̄j∈S Ψ (q̄j)

subject to

Zjf (A0,A+) q̄j = 0 and Q̄∗
′

j−1q̄j = 0

where

Ψ (q̄j) =
∑
i∈I+

Hi,+∑
h=0

g

(
−e′iLh (A0,A+) q̄j

σi

)
+
∑
i∈I−

Hi,−∑
h=0

g

(
e′iLh (A0,A+) q̄j

σi

)
,

g (ω) = 100ω if ω ≥ 0 and g (ω) = ω if ω ≤ 0, σi is the standard error of variable i, Q̄∗j−1 =[
q̄∗1 · · · q̄∗j−1

]
for 1 ≤ j ≤ n, and S = S0. We follow the convention that Q̄∗0 is the n × 0 empty

matrix.9

As before, if the prior on the reduced-form parameters is conjugate, then the posterior of the

reduced-form parameters will have the multivariate normal inverse Wishart distribution. As men-

tioned, there are very efficient algorithms for obtaining independent draws from this distribution. In

practice, the researcher will use the above algorithm where (A0,A+) = (h(Σ)−1,Bh(Σ)−1) with h(Σ)

set equal to the Cholesky decomposition of Σ such that h(Σ) is upper triangular with positive diago-

nal. We will make this assumption throughout this section. This will also be the case in Section 6 and

Section 7. For ease of exposition, in the rest of the paper we will assume the notational convention

that T is equivalent to h(Σ). Hence, T is the Cholesky decomposion of Σ.

5.2 Choosing a Single Orthogonal Matrix Q

As mentioned above, the set of structural parameters satisfying the sign and zero restrictions is of

positive measure on the set of structural parameters satisfying the zero restrictions. Conditional on a

draw from the posterior of the reduced-form parameters, our Algorithm 4 uses this result to draw from

the uniform distribution of orthogonal matrices conditional on the zero restrictions being satisfied.

The PFA abstracts from using the result. Instead, given any draw of the reduced-form parameters,

8See Mountford and Uhlig (2009) for details.
9To obtain σi, we compute the standard deviation of the OLS residuals associated with the i-th variable.
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(B,Σ), the penalty function chooses an optimal orthogonal matrix Q̄∗ =
[
q̄∗1 · · · q̄∗n

]
∈ O(n) that

solves the following system of equations

Zjf
(
T−1,BT−1

)
q̄∗j = 0 and

Ψ
(
q̄∗j
)

=
∑
i∈I+

Hi,+∑
h=0

g

(
−

e′iLh (T−1,BT−1) q̄∗j
σi

)
+
∑
i∈I−

Hi,−∑
h=0

g

(
e′iLh (T−1,BT−1) q̄∗j

σi

)
,

for 1 ≤ j ≤ n where, in practice, it is also the case that (A0,A+) = (T−1,BT−1) and Ψ
(
q̄∗j
)

is the

value of the loss function at the optimal value q̄∗j . Of course, the optimal orthogonal matrix that solves

the system of equations is the one that minimizes the loss function.

There are, at least, three possible issues with this approach. First, the optimal orthogonal matrix

Q̄∗ that solves the system of equations may be such that the sign restrictions do not hold. Second,

since only one orthogonal matrix is chosen, the researcher is clearly not considering all possible values

of the structural parameters conditional on the sign and zero restrictions. In the applications, we will

see how this issue greatly affects the confidence intervals. Third, it is easy to guess that by choosing

a single orthogonal matrix to minimize a loss function, we may be introducing bias on the IRFs and

other statistics of interest. Assume that the IRFs of two variables to a particular shock are correlated.

Then, by choosing a particular orthogonal matrix that maximizes the response of one of the variables

to the shock by minimizing the loss function, we are biasing the response of the other variable to

the same shock. The PFA behaves as if there were additional sign restrictions on variables that are

seemingly unrestricted and, hence, violates the agnosticism of any identification scheme being used.

In general, it is hard to formally prove such a claim because the optimal orthogonal matrix, Q̄∗, is

a function of the draw of the reduced-form parameters; hence, in most cases, we will just be able to

look at the correlations between IRFs. These correlations are useful in understanding any bias that

one could find, but they fall short of being a formal argument. Fortunately, there are exceptions. In

the next subsection, we present a class of sign and zero restrictions where this claim can be formally

proved. For this class of restrictions, we will formally show how choosing a single orthogonal matrix

may impose additional restrictions on variables that are seemingly unrestricted. Nevertheless, even

without a formal proof for a general class of sign and zero restrictions, this is a very serious drawback

because the most attractive feature of sign restrictions is that one can be agnostic about the response of
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some variables of interest to some structural shocks. The applications will also highlight the dramatic

economic implications of this final issue.

5.3 Is the Penalty Function Approach Truly Agnostic?

We now formally show how the PFA imposes additional sign restrictions on variables that are seemingly

unrestricted. In this sense, the procedure is not truly agnostic and introduces bias in the IRFs and

other statistics of interest. As argued above, choosing a single orthogonal matrix minimizing a loss

function is likely to introduce some bias. Nevertheless, it is hard to formally prove this because the

optimal orthogonal matrix depends on a given draw of reduced-form parameters. Fortunately, there

is a class of sign and zero restrictions for which a formal proof is indeed possible because the optimal

orthogonal matrix is independent of the draw of the reduced-form parameters.

Consider a structural vector autoregression with n variables, and assume that we are interested in

imposing a positive sign restriction at horizon zero on the response of the second variable to the j-th

structural shock, and a zero restriction at horizon zero on the response of the first variable to the j-th

structural shock.10 Let (B,Σ) be any draw from the posterior of the reduced-form parameters. Then,

to find the optimal orthogonal matrix, Q̄∗, we need to solve the following problem

q̄∗j = argminq̄j∈S Ψ (q̄j)

subject to

e′1L0

(
T−1,BT−1

)
q̄j = 0 (6)

where

Ψ (q̄j) = g

(
−e′2L0 (T−1,BT−1) q̄j

σ2

)
.

Note that we are identifying only one structural shock; therefore, we do not need to impose the

orthogonality constraint between the different columns of Q̄∗.

Equation (6) implies that the optimal q̄∗j has to be such that e′1L0 (T−1,BT−1) q̄∗j = e′1T
′q̄∗j =

t1,1q̄
∗
1,j = 0, where the next to last equality follows because T′ is lower triangular. Thus, q̄∗1,j =

0. To find the remaining entries of q̄∗j , it is convenient to write e′2L0 (T−1,BT−1) q̄j = e′2T
′q̄j =

10The order of the restrictions is not important. It is also the case that the results in this subsection hold when we
have several zero restrictions and a single sign restriction identifying a particular structural shock. We choose to present
the results for a single zero restriction to simplify the argument.
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∑2
s=1 ts,2q̄s,j, where the last equality follows because T′ is lower triangular. Substituting q̄∗1,j = 0

into e′2L0 (T−1,BT−1) q̄j yields t2,2q̄2,j. If −e′2L0 (T−1,BT−1) q̄j ≥ 0, then f

(
−e′2L0(T−1,BT−1)q̄j

σ2

)
=

−100
t2,2q̄2,j

σ2
; otherwise, f

(
−e′2L0(T−1,BT−1)q̄j

σ2

)
= − t2,2q̄2,j

σ2
. Since q̄∗1,j = 0, and q̄∗ must belong to S,

it is straightforward to verify that the criterion function is minimized at q̄∗j =
[

0 1 0 · · · 0
]′

.

Thus, the PFA imposes additional zero restrictions on the orthogonal matrix Q. We now show that

these zero restrictions also imply additional sign restrictions on the responses of variables of interest

that are seemly unrestricted.

If the PFA were truly agnostic, it would impose no additional sign restrictions on the responses

of other variables of interest to the j-th structural shock. In our example, this is not the case; the

PFA introduces additional sign restrictions on the response of other variables to the j-th structural

shock. To illustrate the problem, note that we have not introduced explicit sign restrictions on any

variable except for the second. Nevertheless, the response at horizon zero of the i-th variable to the

j-th structural shock for i > 2 does not depend on q̄∗j and it equals

e′iL0

(
T−1,BT−1

)
q̄∗j = t2,i for all i > 2.

Thus, if the posterior distribution of t2,i differs from the posterior distribution of the IRFs, the PFA

will not recover the correct posterior distribution of the IRFs. In some cases, as we will show in our

applications, the posterior distribution of t2,i is such that the event t2,i > 0 (t2,i < 0) occurs more

often than it should if correctly drawing from the posterior distribution of the IRFs. In that sense the

PFA may introduce additional sign restrictions on seemingly unrestricted variables.

Finally, it is worth noting that the result that the criterion function is minimized at

q̄∗j =
[

0 1 0 · · · 0
]′

implies that, for this class of sign and zero restrictions, the Mountford and Uhlig (2009) methodology

can be seen as a particular case of ours. Why? Because having the j-th column of the orthogonal

matrix equal to
[

0 1 0 · · · 0
]′

can always be enforced by zero restrictions on the j-th column

of the orthogonal matrix. In Subsection 6.3.1 we will show how to implement those restrictions in the

case of optimism shocks.
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6 Application to Optimism Shocks

In this section, we use our methodology to study one application related to optimism shocks previously

analyzed in the literature by Beaudry et al. (2011) using the PFA. The aim of Beaudry et al. (2011)

is to contribute to the debate regarding the source and nature of business cycles. The authors claim

to provide new evidence on the relevance of optimism shocks as the main driver of macroeconomic

fluctuations using sign and zero restrictions to isolate optimism shocks. At least in their benchmark

identification scheme, Beaudry et al. (2011) want to be agnostic about the response of consumption

and hours worked to optimism shocks. As we show below, the problem is that, by using the PFA, they

are not being really agnostic about the response of these two variables.

After replicating their results, we repeat their empirical exercises using our methodology − that

truly respects the agnosticism of the identification scheme − to show how their main economic conclu-

sion substantially changes. While Beaudry et al. (2011) conclude that optimism shocks are associated

with standard business cycle type phenomena because they generate a simultaneous boom in output,

investment, consumption, and hours worked, we show that, using our truly agnostic methodology, it is

very hard to support such a claim. Moreover, they also find that optimism shocks account for a large

share of the forecast error variance (FEV) of output, investment, consumption, and hours worked

at several horizons. But again, once one uses our methodology such results are also substantially

weakened. We also report how our methodology is not only correct, but faster than the PFA.

6.1 Data and Identification Strategy

Beaudry et al. (2011) use two data sets. In the first one, they use data on TFP, stock price, con-

sumption, the real federal funds rate, and hours worked. In the second one, they add investment and

output. In both data sets, they consider the three identification strategies described in Table 1.

Identification 1 Identification 2 Identification 3
Adjusted TFP 0 0 0
Stock Price + + +
Consumption + +
Real Interest Rate +
Hours Worked
Investment
Output

Table 1: Identification Schemes Defined in Beaudry et al. (2011)
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Identification 1 is the benchmark, where optimism shocks (sometimes called bouts of optimism)

are identified as positively affecting stock prices and as being orthogonal to TFP at horizon zero.

Identification 2 adds a positive response of consumption at horizon zero as an additional restriction to

Identification 1. Finally, Identification 3 adds a positive response of the real interest rate at horizon

zero to Identification 2. Appendix 9.1 gives details on the priors and the data sets. Identification 1

is agnostic about the response of consumption and hours worked to optimism shocks. As we will see

below, the PFA will not respect this agnosticism.

Next, we map these identification strategies to the function f (A0,A+) and the matrices Ss and Zs

necessary to apply our methodology. Since the sign and zero restrictions are imposed at horizon zero,

we have that f (A0,A+) = L0 (A0,A+) in both data sets. The matrices Ss and Zs are a function of

the number of variables used in the SVAR. In the smaller data set, when five variables are used, the

Ss matrices are

S1 =
[

0 1 0 0 0
]
,S1 =

 0 1 0 0 0

0 0 1 0 0

 , and S1 =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


for Identifications 1, 2, and 3 respectively, while the Z matrix is Z1 =

[
1 0 0 0 0

]
. In the larger

data set, the sign and zero restrictions are defined analogously.

6.2 IRFs

We first show replications of the IRFs reported in Beaudry et al. (2011) using the PFA. Then, we

analyze how the results change once we use our methodology. Sometimes we will label our methodology

the ARRW methodology. Panel (a) in Figure 3 shows the IRFs of TFP, stock price, consumption,

the federal funds rate, and hours worked under Identification 1 when using the PFA on the first data

set. This panel replicates the first block of Figure 1 in Beaudry et al. (2011). The identified shocks

generate a boom in consumption and hours worked. The response of hours worked is hump shaped.

We also report 68 percent confidence intervals. Clearly, the confidence intervals associated with the

IRFs do not contain zero for, at least, 20 quarters. Thus, it is easy to conclude that optimism shocks

generate standard business cycle type phenomena. Panels (b) and (c) in Figure 3 show the IRFs of

TFP, stock price, consumption, the federal funds rate, and hours worked under Identifications 2 and 3.

These panels replicate the second and third blocks of Figure 1 in Beaudry et al. (2011). As expected,
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(a) Identification 1 (b) Identification 2 (c) Identification 3

Figure 3: IRFs to an Optimism Shock Using the PFA: Five-Variable SVAR

because of the addition of the sign restrictions on the IRF of consumption, the results are stronger.

Using these two identification schemes we also find a positive response of consumption and a positive

hump-shaped response of hours worked to optimism shocks. Furthermore, the positive responses last

longer than under Identification 1 and the confidence intervals tell us that the IRFs are significantly

different from zero. The findings reported in Figure 3 are robust to extending the number of variables.

Figure 17 in the appendix shows the results when we consider the larger data set.

As expected, these IRFs are highlighted by Beaudry et al. (2011). In theory, Identification 1

is agnostic about the response of consumption and hours worked to an optimism shock, while the

identified shock generates a boom in consumption and hours worked. If correct, this conclusion would

strongly support the view that optimism shocks are relevant for business cycle fluctuations. But, as

we will show below, these IRFs are not correct. They do not reflect the IRFs associated with the

agnostic identification scheme 1 because the PFA introduces sign restrictions in addition to the ones

described in Table 1.

Once we use the ARRW methodology to compute the correct IRFs, the results highlighted by

Beaudry et al. (2011) basically disappear. Panel (a) in Figure 4 reports the results for the first data

set using the ARRW methodology under Identification 1. There are three important differences with

the results reported in Beaudry et al. (2011). First, the PFA chooses a very large median response
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(a) Identification 1 (b) Identification 2 (c) Identification 3

Figure 4: IRFs to an Optimism Shock Using the ARRW Methodology: Five-Variable SVAR

of stock prices in order to minimize the loss function. Second, the median IRFs for consumption and

hours worked are closer to zero when we use the ARRW methodology. Third, the confidence intervals

associated with the ARRW are much larger than the ones obtained with the PFA. As a consequence,

using the PFA, there is an upward bias in the IRFs and artificially narrow confidence intervals.

We need to consider Identifications 2 and 3 (see Panels (b) and (c) in Figure 4), which force

consumption to increase after an optimism shock, to find moderate evidence of positive IRFs of con-

sumption and hours worked. But it is still the case that the median response of stock prices is weaker,

the median IRFs of consumption and hours worked are closer to zero (i.e, the upward bias persists)

and the confidence intervals are still quite wide when compared with the ones reported in Beaudry

et al. (2011). As reported in Figure 18, these findings are robust to considering a larger SVAR.

In summary, using the ARRW methodology it is hard to claim that optimism shocks trigger a boom

in consumption and hours worked unless we impose a positive response of consumption at horizon zero.

Even after we impose this extra positive sign restriction, the results under the ARRW methodology

are much weaker. The sharp results reported in Beaudry et al. (2011) are, as indicated above, due

to upward bias in the response of consumption and hours worked and artificially narrow confidence

intervals associated with the PFA. Once we use the ARRW methodology to solve these two problems,

the results disappear. Next, we show that the discrepancy has its origin in the fact that the PFA does
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not respect the agnosticism of the identification scheme by introducing additional sign restrictions on

consumption and hours worked.

6.2.1 Understanding the Bias and the Artificially Narrow Confidence Intervals

We now shed some light on the upward bias and the artificially narrow confidence intervals. Let us

begin with the upward bias. We will focus on the five-variable SVAR. In the appendix we show that

the same conclusions are obtained using the seven-variable SVAR. Figure 5 plots the median IRFs and

the 68 percent confidence intervals obtained using the ARRW methodology and compares them with

the median IRFs obtained using the PFA. Figure 19, in the appendix, does the same for the larger

SVAR. Clearly, the median IRFs constructed using the PFA are close to the 84-th confidence band

constructed using the ARRW methodology. It is easy to observe that the PFA selects a large response

of stock prices to optimism shocks in order to minimize the loss function. By choosing a large response

of stock prices, the PFA also induces a positive response of consumption and hours worked because

the three responses are positively correlated. For the five-variable SVAR the correlation between the

IRF of stock prices to an optimism shock at horizon zero with the IRF of consumption to the same

shock and horizon is 0.22. In the case of hours worked it is 0.13. The correlations are 0.26 and 0.12

in the larger SVAR. By inducing this positive response of consumption and hours worked, the PFA is

introducing sign restrictions on these two variables and, thus, not respecting the agnosticism of the

identification scheme.

Let us now consider the artificially narrow confidence intervals. We have repeated several times

that the PFA selects a single orthogonal matrix instead of drawing from the conditional uniform distri-

bution. As we mentioned when describing Algorithm 4, for each draw from the posterior distribution

of the reduced-form parameters, there is a distribution of IRFs conditional on the sign and zero re-

strictions holding. By selecting a single orthogonal matrix, the PFA takes a single IRF from such a

distribution. Figure 6 plots the 68 percent probability intervals from the distribution of IRFs such that

the sign and zero restrictions hold at the OLS point estimate of the reduced-form parameters. These

intervals are constructed using a single value of the structural parameters, obtained from the Cholesky

decomposition and the OLS point estimate of the reduced-form parameters, and several draws of the

conditional uniform distribution of the orthogonal matrix Q. We have generated these draws repeat-

ing steps 2 and 3 of Algorithm 4 for the single value of the structural parameters. The probability

intervals are compared with the single IRFs obtained with the PFA evaluated at the same value of the
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(a) Identification 1 (b) Identification 2 (c) Identification 3

Figure 5: Comparison of IRFs to an Optimism Shock: Five-Variable SVAR

Note: Median PFA refers to the median IRF obtained using the PFA.

reduced-form parameters (i.e., the OLS point estimate).11 In Figure 20 in the appendix we report the

results for the seven-variable SVAR . The dashed line shows the value of the IRFs resulting from the

PFA. The shadow area describes the 68 percent probability intervals obtained with our methodology.

No uncertainty is considered when the PFA is used. In contrast, using the ARRW methodology we

can see that there is an empirically relevant distribution of IRFs conditional on the sign and zero

restrictions holding. Additionally, note that for some variables − such as stock price, consumption,

and hours worked − the IRFs obtained using the PFA are close to the 84-th confidence band. Hence,

once again, we can see how the PFA picks a large response of stock prices and there is an upward

bias in the response of consumption and hours worked. The fact that the Mountford and Uhlig (2009)

methodology does not consider the distribution of IRFs lies behind the narrower confidence intervals

that Beaudry et al. (2011) report.

We can summarize our findings in Figure 7. Each column compares the posterior distributions

of IRFs at horizon zero and the median IRFs for stock prices, consumption, and hours worked for

each identification using both the PFA and the ARRW methodology.12 The posterior distributions

11We present the results only for identification 1. Similar results are obtained for the other two identification schemes
and alternative point estimates.

12We report average median IRFs computed using horizons 0 to 3. The bias is larger using four periods and the
results are emphasized. In any case, the bias persists even if we use only horizon 0.
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(a) Identification 1 (b) Identification 2 (c) Identification 3

Figure 6: Distribution of IRFs with the ARRW Methodology vs. Single IRFs with the PFA: Five-
Variable SVAR

Note: OLS PFA refers to the IRF obtained using the PFA and the OLS reduced-form estimates.

are approximated using a kernel smoothing function.13 We have focused on the five-variable SVAR.

Similar results apply to the seven-variable SVAR. Column 1 displays the results for Identification

1. Comparing the PFA and the ARRW methodology we reach the following conclusions. First,

the posterior distribution of the IRFs of stock prices obtained using the PFA is centered around the

right-hand tail of the distribution obtained using the ARRW methodology. The bias is even more clear

looking at the median IRFs. Second, the PFA dramatically underestimates the variance of the posterior

distribution of IRFs of stock prices. These two results were expected since the PFA maximizes the

response of stock prices to optimism shocks in order to minimize the loss function. Since draws from

the posterior distribution of the IRFs of consumption and hours worked are positively correlated with

draws of the IRF of stock prices, we also observe artificially narrow and biased posterior distributions

of the IRFs for consumption and hours worked. Columns 2 and 3 show the results for Identifications

2 and 3. In both cases, we reach the same conclusion. The posterior distributions of IRFs at horizon

zero for stock prices, consumption, and hours worked are artificially compressed and upwardly biased

when computed using the PFA.

We now present additional evidence that the PFA introduces sign restrictions on variables that are

13We use the MATLAB ksdensity function based on Bowman and Azzalini (1997).
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(c) Identification 3

Figure 7: Density of IRFs at Horizon Zero and Median of IRFs from Horizons Zero to Three

seemingly unrestricted, thus not respecting the agnosticism of the identification scheme. Let’s focus

on the case of the five-variable SVAR. Similar results apply to the seven-variable SVAR. We begin

with Identification 1. Table 2 compares the posterior probabilities that the IRFs for consumption and

hours worked at horizon zero are negative for the two methodologies. The IRF of consumption is never

negative when we use Mountford and Uhlig’s (2009) methodology, while it is negative approximately 40

percent of the time under the ARRW methodology. The same is basically true for hours worked. These

can also be seen by comparing the mean responses reported in Table 2. Therefore, Table 2 strongly

supports the argument that the PFA does not respect the theoretical agnosticism of the identification

scheme by introducing additional sign restrictions on these two variables. Another important result

36



that can be found in the table is that the standard deviation of the IRFs at horizon zero is smaller

under the PFA. This is, of course, related to the fact that confidence intervals are wider when using

the ARRW methodology.

The PFA The ARRW Methodology
Mean Std dev Pr(· < 0) Mean Std dev Pr(· < 0)

Consumption 0.1034 0.0260 0.0000 0.0532 0.1914 0.3980
Hours Worked 0.0736 0.0379 0.0250 0.0355 0.2891 0.4490

Table 2: Posterior Probabilities of Negative IRFs at Horizon Zero: Identification 1

Tables 3 and 4 repeat the exercise for Identifications 2 and 3. As we can see, the IRF of hours

worked at horizon zero under Identification 2 is almost never negative using the PFA, while it is

negative in approximately 40 percent of the draws using our methodology. Hence, the PFA also

introduces additional sign restrictions on hours worked in the case of Identification 2.

The PFA The ARRW Methodology
Mean Std dev Pr(· < 0) Mean Std dev Pr(· < 0)

Hours Worked 0.1325 0.0381 0.0010 0.0774 0.2793 0.3930

Table 3: Posterior Probabilities of Negative IRFs at Horizon Zero: Identification 2

The PFA The ARRW Methodology
Mean Std dev Pr(· < 0) Mean Std dev Pr(· < 0)

Hours Worked 0.1325 0.0381 0.0010 0.0613 0.2833 0.4090

Table 4: Posterior Probabilities of Negative IRFs at Horizon Zero: Identification 3

6.3 FEV

The fact that the PFA adds sign restrictions on variables that are seemingly unrestricted and does not

respect the agnosticism of the identification scheme is also reflected on the FEV reported in Beaudry

et al. (2011). Let us first analyze the SVAR with the smaller data set. We compare the contribution

of optimism shocks to the FEV obtained using the ARRW methodology and the PFA. For ease of

exposition, in Table 5 we focus on the contributions to the FEV at horizon 40.14

14Table 12 in the appendix reports the contributions to the FEV at additional horizons.
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The ARRW Methodology

Identification 1 Identification 2 Identification 3
Adjusted TFP 0.09 0.12 0.17

[ 0.03 , 0.22 ] [ 0.04 , 0.28 ] [ 0.06 , 0.33 ]
Stock Price 0.16 0.26 0.31

[ 0.03 , 0.47 ] [ 0.07 , 0.58 ] [ 0.09 , 0.62 ]
Consumption 0.17 0.28 0.40

[ 0.02 , 0.49 ] [ 0.06 , 0.59 ] [ 0.13 , 0.66 ]
Real Interest Rate 0.18 0.20 0.23

[ 0.07 , 0.39 ] [ 0.08 , 0.40 ] [ 0.09 , 0.44 ]
Hours Worked 0.18 0.27 0.29

[ 0.04 , 0.48 ] [ 0.07 , 0.55 ] [ 0.07 , 0.57 ]

The PFA

Identification 1 Identification 2 Identification 3
Adjusted TFP 0.17 0.22 0.28

[ 0.08 , 0.30 ] [ 0.10 , 0.37 ] [ 0.14 , 0.43 ]
Stock Price 0.72 0.71 0.57

[ 0.55 , 0.85 ] [ 0.57 , 0.82 ] [ 0.42 , 0.72 ]
Consumption 0.26 0.69 0.76

[ 0.13 , 0.43 ] [ 0.53 , 0.83 ] [ 0.59 , 0.87 ]
Real Interest Rate 0.13 0.13 0.35

[ 0.07 , 0.22 ] [ 0.07 , 0.22 ] [ 0.29 , 0.43 ]
Hours Worked 0.31 0.62 0.49

[ 0.21 , 0.44 ] [ 0.48 , 0.73 ] [ 0.34 , 0.64 ]

Table 5: Share of FEV Attributable to Optimism Shocks at Horizon 40: Five-Variable SVAR

We first consider Identification 1. Using the ARRW methodology, the median contribution of

optimism shocks to the FEV of consumption and hours worked is 17 and 18 percent, respectively.

In contrast, using the PFA the median contributions are 26 and 31 percent, respectively. When

Identification 2 is used, the median contribution of optimism shocks to the FEV of consumption and

hours worked is 28 and 27 percent using our methodology, but it is equal to 71 and 62 percent using the

PFA. Identification 3 yields the highest contribution of optimism shocks to the FEV of consumption

and hours worked, 40 and 29 percent, respectively, when using our methodology. However, these values

are moderate compared to the 76 and 49 percent that we found when using the PFA. Table 5 also

reports the 68 percent confidence intervals. As was the case with IRFs, the confidence intervals are

much wider under the ARRW methodology. They are so wide that, in some cases, it is easy to argue

that optimism shocks explain little of the FEV of most relevant variables.

The results for the seven-variable SVAR are reported in the appendix, Table 13 reports results
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at horizon 40 and Table 14 reports additional horizons. As expected, because of the increase in the

number of variables, the contribution of optimism shocks declines relative to the case of five variables.

For example, using the ARRW methodology the median contribution of optimism to the FEV of output

is 12, 16, and 22 percent under Identifications 1, 2, and 3, respectively. In any case, these values are

remarkably lower than the ones found using the PFA: 23, 59, and 60 percent, respectively. As before,

confidence intervals are much wider when using the ARRW methodology.

Summarizing, using the ARRW methodology it is easy to conclude that optimism shocks explain

a very small share of the FEV of any variable in the SVAR. This conclusion contrasts with the results

obtained using the PFA. As was the case with the IRFs, since the PFA is not truly agnostic, it induces

an upward bias in the median explained share of the FEV and artificially narrow confidence intervals.

It is because of these two issues that Beaudry et al. (2011) can claim that optimism shocks explain a

large share of the FEV of some relevant variables. Once these two issues are corrected by the ARRW

methodology, it is not possible to support such a claim. We have reported the results only for horizon

40 but Appendix 9.3 shows that these conclusions are true at any horizon.

6.3.1 Replicating the Penalty Function Approach Using the ARRW Methodolgy

In this subsection, we show that in the case of Identification 1 the PFA in Beaudry et al. (2011) can be

replicated using the ARRW methodology by considering some additional restrictions on the orthogonal

matrix Q.15

Consider Identification 1 and note that there exists a closed-form solution to the minimization

problem embedded in the PFA, as shown in Subsection 5.3. Specifically, the penalty function is

minimized when the first column of the orthogonal matrix equals q̄∗1 =
[

0 1 0 · · · 0
]′

. Thus, we

can replicate Beaudry et al. (2011) using our methodology by imposing zero constraints on the first

column of the orthogonal matrix Q. In particular, let f (A0,A+) =
[

L0 (A0,A+) In

]′
, where In

allows us to put the zero constraints on the orthogonal matrix Q. We define the matrices S and Z as

15In fact, this is true for any identification that fulfills the conditions stated in Subsection 5.3.
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follows

S1 =
[

0 1 0 0 0 0 0 0 0 0
]

and Z1 =



1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1


.

The S matrix is identical to the one reported in Subsection 6.1, but the Z matrix has changed to

reflect the additional restrictions on the first column of the orthogonal matrix Q.

(a) The PFA (b) ARRW with Additional Restrictions

Figure 8: Replicating the PFA using the ARRW Methodology: Five-Variable SVAR

Panel (b) in Figure 8 plots the IRFs of TFP, stock price, consumption, the federal funds rate, and

hours worked under Identification 1 using the ARRW methodology with the additional restrictions on

the first column of the orthogonal matrix Q. The results are identical to those reported in Panel (a) of

Figure 3, which are reproduced in Panel (a) of Figure 8. Thus, we have shown that (under Identification

1), the PFA is a particular case of our methodology with additional restrictions on the first column of

the orthogonal matrix Q. This also applies to the seven-variable SVAR as shown in Figure 21 in the

appendix. Since putting constraints on the orthogonal matrix Q is equivalent to imposing additional

sign restrictions, the PFA does not respect the agnosticism of the identification scheme and it naturally
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produces artificially narrow confidence intervals and biased IRFs. Unfortunately, we can not show that

the PFA is a particular case of our methodology for all identification schemes. Nevertheless, it should

be clear that it always introduces additional restrictions (though they can not always be mapped into

our methodology) that create artificially narrow confidence intervals and may introduce bias.

6.4 Computational Time

Our methodology is faster than the PFA. Table 6 reports the results for the case of optimism shocks

using the five-variable SVAR. The PFA is approximately ten times slower than our methodology.

Similar results can be found in the case of the seven-variable SVAR. Note that the computational time

in Mountford and Uhlig’s (2009) methodology is a function of the non-linear solver used to solve the

minimization of the penalty function. We start the non-linear optimization from eight random starting

points and then we pick the best one. Mountford and Uhlig (2009) follow a similar approach in order

to avoid finding a local minimum. Of course, Identification 1 could have been solved faster with the

PFA using the insights of Section 5.3.

The PFA The ARRW Methodology Ratio
Identification 1 98.17 9.81 10.01
Identification 2 102.10 10.18 10.03
Identification 3 106.69 10.90 9.79

Table 6: Computational Time in Seconds: Five-variable SVAR

7 Fiscal Policy Shocks

Let us now focus on the second application. The aim of Mountford and Uhlig (2009) is to analyze the

effects of fiscal policy using SVARs. They focus on unanticipated and anticipated fiscal policy shocks.

They identify an unanticipated government revenue shock as well as an unanticipated government

spending shock by imposing sign restrictions on the fiscal variables themselves as well as imposing

orthogonality to a generic business cycle shock and a monetary policy shock. No sign restrictions are

imposed on the responses of output, consumption, and investment to fiscal policy shocks. Thus, the

identification remains agnostic with respect to the responses of these key variables of interest to fiscal

policy shocks. The problem is, again, that the PFA is not really agnostic about the response of these

variables.
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They also consider three combined shocks (which are linear combinations of the unanticipated fiscal

policy shocks): deficit-spending shocks, deficit-financed tax cut shocks, and balanced-budget spending

shocks. These shocks are used to compare three fiscal policy scenarios of the same name. We proceed

as in the case of the optimism shocks. We first replicate the results that Mountford and Uhlig (2009)

obtain using the PFA. Then, we repeat their empirical work using our methodology, which is truly

agnostic, to show how their main results significantly change.16 Mountford and Uhlig (2009) conclude

that deficit-financed tax cut shocks work best among the fiscal policy scenarios to improve GDP. In

contrast, using our methodology we find no evidence to support such a claim. More generally, we find

that it is very difficult to reach any conclusion about the effects of any of the three combined shocks

(and therefore about the effects of any of the three associated fiscal policy scenarios) because of very

wide confidence intervals around the median IRFs and the median fiscal multipliers associated with

each scenario. As a consequence, any conclusion derived from Mountford and Uhlig’s (2009) results

relies on artificially narrow confidence intervals associated with the PFA.

Our findings also show that it is very hard to support any of Mountford and Uhlig’s (2009) claims

about the effects of the unanticipated fiscal policy shocks. Regarding unanticipated government rev-

enue shocks, while Mountford and Uhlig (2009) report that GDP and consumption significantly decline

in response to such shocks using the PFA, we find no support for such a claim using our methodology.

The median IRFs of GDP, consumption, and non-residential investment to such shocks are negative

using the PFA, but positive using our methodology. Furthermore, wide confidence intervals invalidate

any conclusion. In the case of unanticipated government spending shocks, except for investment, the

median IRFs from both methodologies are quite similar to each other, but wide confidence intervals

make it very hard to reach any conclusion. As was the case with Beaudry et al. (2011), we will argue

that the problem behind the bias and the artificially narrow confidence intervals is that, by using

the PFA, the authors are not being truly agnostic – additional sign restrictions are being imposed on

output, consumption, and investment. Finally, for this application our methodology is also faster than

the PFA.

7.1 Data and Identification Strategy

We use the same data set as Mountford and Uhlig (2009) in order to shed light on the implications of

our methodology. The data set contains 10 U.S. variables at a quarterly frequency from 1955 to 2000:

16To keep our paper at a reasonable length, we omit the analysis of the anticipated fiscal policy shocks.
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GDP, private consumption, total government spending, total government revenue, real wages, private

non-residential investment, interest rate, adjusted reserves, producer price index of crude materials

(PPIC), and GDP deflator. The identification strategy is described in Table 7. Appendix 9.2 gives

details about the estimation procedure and the data set.

Shocks
Business Cycle Monetary Policy Gov Revenue Gov Spending

GDP +
Total Gov Spending +
Total Gov Revenue + +
Interest Rate +
Adjusted Reserves −
PPIC −
GDP Deflator −
Private Consumption +
Private Non-Res Investment +
Real Wages

Table 7: Mountford and Uhlig (2009)

7.1.1 Unanticipated Fiscal Policy Shocks

We begin by describing the identification of the unanticipated fiscal policy shocks. Following Mountford

and Uhlig (2009), we identify these shocks in three steps. In the first step, we identify a business cycle

shock imposing four positive sign restrictions on GDP, private consumption, private non-residential

investment, and total government revenue during four quarters − quarters zero to three − following the

initial shock. In the second step, we identify a monetary policy shock imposing positive sign restrictions

on interest rates, and negative sign restrictions on adjusted reserves, GDP deflator, and PPIC during

the four quarters following the initial shock. In addition, the monetary policy shock is required to

be orthogonal to the business cycle shock. In the third step, we identify the unanticipated fiscal

shocks. The unanticipated government revenue shock is identified imposing positive sign restrictions

on the response of total government revenue during the four quarters following the initial shock and

requiring that the shock be orthogonal to the business cycle shock and the monetary policy shock. The

unanticipated government spending shock is identified likewise. Hence, the identification is agnostic

with respect to the responses of GDP, private consumption, and private non-residential investment to

fiscal policy shocks. The PFA will not respect this agnosticism. Importantly, the unanticipated fiscal

shocks are not required to be orthogonal between them.
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As in the case of optimism shocks, it is instructive to map the identification strategy to our

methodology. The function f (A0,A+) and the matrices Ss necessary to apply our methodology are

f (A0,A+) =


L0(A0,A+)

L1(A0,A+)

L2(A0,A+)

L3(A0,A+)

 and Sj =


Sj0 0m(j),n 0m(j),n 0m(j),n

0m(j),n Sj1 0m(j),n 0m(j),n

0m(j),n 0m(j),n Sj2 0m(j),n

0m(j),n 0m(j),n 0m(j),n Sj3

 for j = 1, . . . , 4.

where 0m(j),n is an m(j) times n matrix of zeros and m(j) = 4 if j = 1 or 2 and m(j) = 1 otherwise,

and

S1t =


1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

 ,S2t =


0 0 0 1 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 −1 0 0 0

 ,

S3t =
[

0 0 1 0 0 0 0 0 0 0
]
, and S4t =

[
0 1 0 0 0 0 0 0 0 0

]
for t = 0, . . . , 3. In addition, we need to impose the orthogonality conditions between the shocks as

described above. This is straightforward from the discussion in Section 3.2. The only challenge is that

Mountford and Uhlig (2009) do not require orthogonality between the unanticipated fiscal shocks; thus,

we need to accommodate our methodology to study this case. We accomplish this by requiring that

the unanticipated government revenue (spending) shock, associated with the third (fourth) column

of Q, be orthogonal to the first and second columns of Q, associated with the business cycle and

monetary policy shocks, respectively, without restricting other columns of Q. For example, in the case

of the unanticipated government spending shock, this is accomplished by modifying R4 (A0,A+) in

Theorem 3 to be equal to

R4 (A0,A+) = Q′2.

The reader should note that a direct application of Theorem 3 would make R4 (A0,A+) depend on

Q′3 instead of Q′2. There are no zero restrictions; hence, we do not need to define any Z matrix.
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Next, we describe the three linear combinations of the unanticipated fiscal policy shocks that are

used to study the three fiscal policy scenarios.

7.1.2 Fiscal Policy Scenarios

The deficit-spending shocks (used to study the deficit-spending scenario) are a sequence of unantici-

pated fiscal policy shocks where total government spending rises by 1 percent and total government

revenue remains unchanged during the four quarters following the initial shock. The deficit-financed

tax cut shocks (used to study the deficit-financed tax cuts scenario) are a sequence of unanticipated

fiscal policy shocks where total government spending remains unchanged and total government revenue

falls by 1 percent during the four quarters following the initial shock. The balanced-budget spending

shocks (used to study the balanced-budget spending scenario) are a sequence of unanticipated fiscal

policy shocks where total government spending rises by 1 percent and total government revenue rises

by 1.28 percent during the four quarters following the initial shock.17 Let (as,t, bs,t) for t = 0, . . . , 3

and s ∈ {DS,DTC,BB} denote the weights to be used in the linear combination of the unanticipated

fiscal policy shocks to get the deficit-spending shocks (DS), the deficit-financed tax cut shocks (DTC),

and the balanced-budget spending shocks (BB), respectively. For example, let us consider the case of

a deficit-spending shock. Following Mountford and Uhlig (2009) we solve for such weights by solving

the linear system of equations described below

0.01 =
τ∑
t=0

(e′GSLτ−t (A0,A+) q4aDS,t + e′GSLτ−t (A0,A+) q3bDS,t) for τ = 0, . . . , 3

0 =
τ∑
t=0

(e′GRLτ−t (A0,A+) q4aDS,t + e′GRLτ−t (A0,A+) q3bDS,t) for τ = 0, . . . , 3

where eGS (eGR) is a unit vector with a one at the entry associated with total government spending

(government revenue) in the SVAR and zeros otherwise. Then, we can use the weights (aDS,t, bDS,t)

for t = 0, . . . , 3 to build the column vector associated with the deficit-spending shocks as qDS =

q4aDS,t + q3bDS,t for t = 0, . . . , 3. In a similar fashion, we can construct weights for the other two

combined shocks and obtain the column vectors qDTC and qBB.

17The percentage increase in total government revenue is higher than the percentage increase in total government
spending so that total government revenues and total government spending increase by the same amount during the
four quarters following the initial shock.
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7.2 IRFs to Unanticipated Fiscal Policy Shocks

Let us begin examining the IRFs. We first show the replications of the IRFs reported by Mountford and

Uhlig (2009) using the PFA and then we analyze how the results change once we use our methodology.

To save space, we do not report results on either business cycle or monetary policy shocks. Also, we

refer to private consumption and to private non-residential investment as consumption and investment,

respectively. Finally, and also because of space considerations, we just concentrate on the responses

of GDP, consumption, and investment.

(a) The PFA (b) The ARRW Methodology

Figure 9: IRFs to an Unanticipated Government Revenue Shock

Figure 9 plots the IRFs to an unanticipated government revenue shock. Panel (a) replicates the

results reported in Figure 4 in Mountford and Uhlig (2009). This panel shows that using the PFA,

the median IRFs of GDP, consumption, and investment are negative. Furthermore, the 68 percent

confidence intervals are narrow and do not contain zero. Therefore, one can easily conclude that

unanticipated government revenue shocks cause a decline in economic activity. In contrast, once

we use our methodology (see Panel b), the sign of the median IRFs changes and the 68 percent
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confidence intervals are much wider. Thus, as in the case of optimism shocks, the PFA creates bias

and artificially narrow confidence intervals. In addition, the PFA chooses a very large median response

of total government revenue.

(a) The PFA (b) The ARRW Methodolgy

Figure 10: IRFs to an Unanticipated Government Spending Shock

Figure 10 plots the IRFs to an unanticipated government spending shock. Panel (a) replicates

Figure 7 in Mountford and Uhlig (2009) and it shows the median IRFs of GDP, consumption, and

investment. Using the penalty approach, the median response of GDP changes from positive to

negative in period 10, the response of consumption changes from zero to negative around period 12,

and the response of investment is always negative. Although less than in the case of the unanticipated

government revenue shocks, the median IRFs change when we use the ARRW methodology (see Panel

b). The changes are important for investment (whose response is positive for 5 periods). Nevertheless,

the confidence intervals are wider under our methodology and they contain zero. Analogously to

the case of unanticipated government revenue shocks, the PFA introduces downward bias (at least

for several quarters) in the response of investment to unanticipated government spending shocks and

creates artificially narrow confidence intervals. It is also the case that the PFA picks a large response
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of total government spending to minimize the loss function.

Summarizing, using the ARRW methodology we observe important changes in the median IRFs to

unanticipated fiscal policy shocks with respect to the results reported in Mountford and Uhlig (2009).

In what follows we show that the lack of agnosticism of the PFA introduces a bias in the response of

some variables and delivers confidence intervals that are artificially narrow. The strong results reported

in Mountford and Uhlig (2009) are because of the bias and the artificially narrow confidence intervals.

The truly agnostic ARRW methodology amends these two problems and the results disappear.

7.2.1 Understanding the Bias and the Artificially Narrow Confidence Intervals

As before, we now shed some light on the biases and artificially narrow confidence intervals. Let us

begin with the biases related to unanticipated government revenue shock. The PFA selects a large

response of total government revenue to this shock in order to minimize the loss function. By selecting

a large response of total government revenue, the PFA is implicitly forcing a negative response of

GDP, consumption, and investment because their IRFs are negatively correlated with the IRF of

total government revenue. The correlations of the IRF of total government revenue to unanticipated

government revenue shocks at horizon zero with the IRFs of GDP, consumption, and investment to

the same shock and horizon are −0.12, −0.11, and −0.01, respectively.

In the case of unanticipated government spending shocks the PFA also selects a large response of

total government spending in order to minimize the loss function. By choosing a large response, the

PFA is implicitly forcing a negative response of investment because its IRF is negatively correlated

with the response of total government spending. The correlation between the IRF of total government

spending to unanticipated government spending shocks at horizon zero with the IRF of investment

to the same shock and horizon is −0.27. Additionally, the PFA is over-estimating the response of

GDP and consumption to an unanticipated government spending shock because the correlations of the

IRFs of GDP and consumption with the IRF of government spending are 0.49 and 0.28, respectively.

By inducing these correlated responses the PFA is introducing additional sign restrictions on these

variables and, thus, not respecting the agnosticism of the identification scheme.

Let us now focus on the artificially narrow confidence intervals generated by the PFA. We have

shown that for each draw from the posterior distribution of the reduced-form parameters, there is a

distribution of IRFs conditional on the sign and zero restrictions holding, and that the PFA selects

a single orthogonal matrix instead of drawing from the conditional uniform distribution. What are
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the consequences of this? Not surprisingly at this juncture, the consequence is artificially narrow

confidence intervals. To see this, we first examine the IRFs to an unanticipated government revenue

shock evaluated at a value of reduced-form parameters given by the OLS point estimates. The dashed

lines in Panel (a) of Figure 11 show the IRFs obtained using the Cholesky decomposition and the

OLS point estimates. The shadow areas in Panel (a) of Figure 11 correspond to the 68% confidence

bands of the distribution of IRFs at the OLS point estimate of the reduced-form parameters. These

confidence bands characterize the distribution of IRFs consistent with the sign and zero restrictions,

and they are constructed using the Cholesky decomposition, the OLS point estimate of the reduced-

form parameters, and several draws from the conditional uniform distribution of orthogonal matrix

Q. The distribution of the IRFs is in sharp contrast with the single IRFs obtained using the PFA

evaluated at the same value of the reduced-form parameters. Panel (b) Figure 11 shows that the same

happens in the case of the unanticipated government spending shock.

(a) Unanticipated Government Revenue Shock (b) Unanticipated Government Spending Shock

Figure 11: Distribution of IRFs with the ARRW Methodology vs. Single IRFs with the PFA

Note: OLS PFA refers to the IRF obtained using the PFA and the OLS reduced-form estimates.

We summarize our findings in Figure 12. The first column compares the posterior distributions
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of IRFs at horizon zero and the median IRFs for total government revenue, GDP, consumption, and

investment to an unanticipated government revenue shock using both the PFA and the ARRW method-

ology.18 The posterior distributions are approximated using a kernel smoothing function. Comparing

the PFA and the ARRW methodology, we reach the following conclusions. First, the posterior distri-

bution of IRFs of total government revenue obtained using the PFA is centered around the right-hand

tail of the distribution obtained using the ARRW methodology. The bias is even more clear, when we

look at the median IRFs. Second, the PFA dramatically underestimates the variance of the posterior

distribution of IRFs of total government revenue. These two results were expected since the PFA is

maximizing the response of total government revenue in order to minimize the loss function. We also

observe very narrow and downwardly biased posterior distributions of the IRFs for GDP, consump-

tion, and investment. Column 2 does the same for the IRFs of total government spending, GDP,

consumption, and investment to an unanticipated government spending shock. Again, the posterior

distribution of IRFs of total government spending obtained using the PFA is centered around the

right-hand tail of the distribution obtained using the ARRW methodology. We also observe very nar-

row and downwardly biased posterior distributions of the IRFs for investment, and there is an upward

bias for the response of GDP.

We now present additional evidence that the PFA is not truly agnostic because it introduces ad-

ditional sign restrictions on variables that are seemingly unrestricted. Table 8 compares the posterior

probabilities that the IRFs for GDP, consumption, and investment to an unanticipated government

revenue shock are negative in at least one of the first four horizons. The IRFs of the three variables are

almost always negative when using the Mountford and Uhlig (2009) methodology, while it is negative

only about 25 percent of the time when using the ARRW methodology. Hence, the PFA imposes addi-

tional sign restrictions on these three variables. Table 9 shows that the PFA also distorts the posterior

probabilities of negative IRFs for GDP and investment in response to an unanticipated government

expenditure shock .

7.3 Three Fiscal Policy Scenarios

Equipped with the unanticipated fiscal policy shocks, we can analyze the three fiscal policy scenarios.

We first study how the IRFs associated with the deficit-spending, the deficit-financed tax cuts, and

18We report average median IRFs computed using horizons 0 to 3. The bias is larger using four periods and the
results are emphasized. In any case, the bias basically persists using only horizon 0.
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Figure 12: Density of IRFs at Horizon Zero and Median of IRFs from Horizons Zero to Three

The PFA The ARRW Methodology
Mean Std dev Pr(· < 0) Mean Std dev Pr(· < 0)

GDP -0.1367 0.0741 0.9882 0.1528 0.2046 0.2400
Consumption -0.0960 0.0854 0.8415 0.0869 0.1582 0.2990
Non-res Investment -0.3658 0.4704 0.7752 0.1528 1.1037 0.2522

Table 8: Posterior Probabilities of Negative IRFs in at Least One of the First Four Horizons: Unan-
ticipated Government Revenue Shock

the balanced-budget spending shocks change when using the ARRW methodology with respect to the

results reported in Mountford and Uhlig (2009). Second, we do the same for the fiscal multipliers. As

has been the case with unanticipated fiscal policy shocks, we just report results for GDP, consumption,
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The PFA The ARRW Methodology
Mean Std dev Pr(· < 0) Mean Std dev Pr(· < 0)

GDP 0.0882 0.0573 0.0565 0.0708 0.2187 0.3795
Consumption 0.0036 0.0523 0.4480 0.0270 0.1681 0.4203
Non-res Investment -0.2157 0.3964 0.7073 0.0708 1.1502 0.4635

Table 9: Posterior Probabilities of Negative IRFs in at Least One of the First Four Horizons: Unan-
ticipated Government Spending Shock

and investment.

7.3.1 IRFs

We begin with the deficit-spending shocks. Panel (a) in Figure 13 replicates the results in Figure 10 in

Mountford and Uhlig (2009). Using the PFA, one could conclude that deficit-spending shocks produce

a drop in GDP (after a few periods of a small increase), consumption, and investment (although the

drop is statistically significant only for investment). However, once we use our methodology, these

results disappear. There is a very wide range of IRFs that are consistent with these shocks, making

it very hard to say anything about the effects of deficit-spending shocks. In most cases the confidence

intervals reported using the ARRW methodology are at least five times bigger than the confidence

intervals reported using the PFA. This means that, once we combine the unanticipated fiscal policy

shocks, the confidence intervals are compounded and become even wider than before. Mountford and

Uhlig’s (2009) conclusions are based on artificially narrow confidence intervals.

Next, we study deficit-financed tax cut shocks. Panel (a) in Figure 14 replicates the results in

Figure 11 in Mountford and Uhlig (2009). We can see that the median IRFs of GDP, consumption,

real wages, and investment are positive and the tight 68 percent confidence intervals do not contain

zero. Mountford and Uhlig (2009) use these results to claim that deficit-financed tax cut shocks work

best to improve economic activity. On the contrary, the IRFs computed using the ARRW methodology

do not provide evidence to support these findings. The median responses are negative for the first few

periods but, again, very wide confidence intervals make the interpretation of the median IRFs very

hard. The upward bias and the artificially narrow confidence intervals obtained using the PFA are

behind Mountford and Uhlig’s (2009) conclusions.

Finally, Mountford and Uhlig (2009) study a balanced-budget spending scenario. Panel (a) in

Figure 15 replicates the results reported in Figure 12 in Mountford and Uhlig (2009). As can be seen,

the median IRFs of GDP, consumption, and investment are (almost always) negative and the narrow
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(a) The PFA (b) The ARRW Methodology

Figure 13: IRFs to a Deficit-Spending Policy Shock

68 percent confidence intervals do not contain zero. Again, once we consider our methodology, there is

no evidence to support these results. The median responses are positive for the first few periods, but

the confidence intervals are so wide that it is hard to conclude anything at all. Downward bias and

artificially narrow confidence intervals are behind any conclusions implied by Mountford and Uhlig

(2009).

Our methodology paints a completely different picture than the one reported in Mountford and

Uhlig (2009). The biases that we find are very hard to interpret because these shocks are linear

combinations of shocks that are already biased. The PFA’s lack of agnosticism is mostly reflected in

extremely narrow confidence intervals.

The comparison between scenarios becomes even harder once we consider the cumulative discounted

IRFs to either deficit-spending or deficit-financed tax cut shocks. The cumulative discounted IRFs

at horizon τ of variable y to the combined shock s is
∑τ

t=0(1 + i)−te′yLt (A0,A+) qs, where ey is a

unit vector that selects the IRF of the variable under analysis, qs defines either the deficit-spending

or deficit-financed tax cut shock depending on the value of s ∈ {DS,DTC}, and i denotes the average
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(a) The PFA (b) The ARRW Methodology

Figure 14: IRFs to a Deficit-Financed Tax Cut Shock

real interest rate over the sample. The real interest rate is computed as the difference between the

federal funds rate and the inflation rate implied by the GDP deflator and, in our sample, equals 2.51

percent − annualized.

Panel (a) in Figure 16 replicates the results reported in Figure 13 in Mountford and Uhlig (2009).

The panel shows that the median cumulative discounted IRF of GDP to a deficit-spending shock

becomes negative after a few periods and in the case of a deficit-financed tax cut shock is always

positive. Moreover, the 68 percent confidence intervals associated with the shocks are narrow and in the

case of deficit-financed tax cut shocks do not contain zero. Based on this evidence, Mountford and Uhlig

(2009) conclude that a deficit-financed tax cut scenario works best to improve GDP. Unfortunately,

once we use the truly agnostic ARRW methodology, this result also disappears. The median cumulative

discounted IRF of GDP to a deficit-spending shock is positive during 25 periods and it is negative

for 10 periods for the case of deficit-financed tax cut shocks. As before, these biases are very hard to

interpret because the deficit-spending and the deficit-financed tax cut shocks are linear combinations

of shocks that are already biased. In any case, the correctly computed 68 percent confidence intervals
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(a) The PFA (b) The ARRW Methodolgoy

Figure 15: IRFs to a Balanced-Budget Shock

contain zero for both IRFs and are at least five times larger than the ones reported using the PFA.

Again, the PFA’s lack of agnosticism is mostly reflected in extremely narrow confidence intervals.

7.3.2 Fiscal Multipliers

In addition to the IRF analysis, Mountford and Uhlig (2009) compute fiscal multipliers to compare

the effects of deficit-spending shocks and deficit-financed tax cut shocks. Specifically, they compute

the present value multipliers at horizon τ of the combined shock s on variable y

∑τ
t=0(1 + i)−te′yLt (A0,A+) qs∑τ

t=0(1 + i)−te′fυs,yLt (A0,A+) qs

1

(f/GDP )

and the impact multipliers at horizon τ of the combined shock s on variable y

e′yLτ (A0,A+) qs

e′fυs,yL0 (A0,A+) qs

1

(f/GDP )
,

where ey is a unit vector that selects the IRF of the variable under analysis, ef is a unit vector
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(a) The PFA (b) The ARRW Methodology

Figure 16: Cumulative IRFs to Deficit-Spending and Deficit-Financed Tax Cut Shocks

that selects the IRF of the fiscal variable (total government revenue or total government spending),

(f/GDP ) denotes the average share of the selected fiscal variable in GDP over the sample, and υs,y

is equal to −1 if s = DTC and y 6= GDP and equals 1 otherwise. The indicator variable υs,y is a

normalization so that the multiplier of the deficit-financed tax cut shock can be interpreted as the

increase in GDP in response to a decrease in total government revenue.

In the case of present value multipliers, y is GDP and f is total government spending (revenue)

when s = DS (DTC). In the case of impact multipliers, y can be GDP, total government spending, or

total government revenue and f is total government spending (revenue) when s = DS (DTC).

Table 10 reports the median multipliers. We also report the 68 percent confidence intervals. Also,

quarter t in the table corresponds to horizon t− 1 in the above formulas.

Panel (a) shows the present value multipliers associated with deficit-spending and deficit-financed

tax cut shocks. The upper block of this panel replicates the results reported in Table 2 in Mountford

and Uhlig (2009). The bottom block of this panel reports the results obtained using our methodology.

Using the PFA, the median multipliers associated with deficit-financed tax cut shocks are positive for

at least 12 quarters. In contrast, these median multipliers are negative at all horizons using the ARRW

methodology. When we consider deficit-spending shocks, we find that while the median multipliers

are negative after 12 quarters using the PFA, they are positive during 20 quarters using the ARRW

methodology. Also, the median multipliers associated with the deficit-spending shocks are larger. At
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1 qrt 4 qrts 8 qrts 12 qrts 20 qrts Max

(a) Present Value Multipliers

The PFA
DTC 0.30 0.53 1.62 4.79 -4.71 4.79

[ 0.13 , 0.50 ] [ 0.44 , 0.63 ] [ 1.15 , 2.27 ] [ 0.80 , 13.93 ] [ -11.34 , 2.93 ] ( qrt 12 )
DS 0.62 0.45 0.05 -0.30 -1.45 0.62

[ 0.26 , 0.99 ] [ 0.33 , 0.57 ] [ -0.30 , 0.43 ] [ -1.05 , 0.41 ] [ -4.87 , 0.34 ] ( qrt 1 )
The ARRW Methodology
DTC -0.75 -0.73 -1.04 -1.56 -1.83 -0.73

[ -2.88 , 1.19 ] [ -2.80 , 3.00 ] [ -3.98 , 2.19 ] [ -4.86 , 1.56 ] [ -3.54 , 0.03 ] ( qrt 4 )
DS 1.12 1.03 1.11 1.58 2.99 3.79

[ -4.33 , 5.67 ] [ -7.68 , 5.86 ] [ -4.84 , 7.88 ] [ -4.61 , 8.16 ] [ -4.32 , 9.57 ] ( qrt 26 )

(b) Impact Multipliers: DTC

The PFA
GDP 0.30 0.95 2.05 3.23 2.33 3.38

[ 0.13 , 0.50 ] [ 0.77 , 1.13 ] [ 1.31 , 2.85 ] [ 2.09 , 4.59 ] [ 0.58 , 4.32 ] ( qrt 14 )
Total Gov Revenue -1.00 -1.00 0.02 0.91 0.89

[ -1.00 , -1.00 ] [ -1.00 , -1.00 ] [ -0.33 , 0.38 ] [ 0.36 , 1.61 ] [ -0.05 , 1.93 ]
Total Gov Spending 0.00 0.00 0.28 0.44 0.40

[ -0.00 , 0.00 ] [ -0.00 , 0.00 ] [ 0.18 , 0.38 ] [ 0.26 , 0.61 ] [ 0.13 , 0.74 ]
The ARRW Methodology
GDP -0.75 -0.42 1.08 1.10 0.19 1.18

[ -2.88 , 1.19 ] [ -3.47 , 3.00 ] [ -3.32 , 2.19 ] [ -7.62 , 1.56 ] [ -10.11 , 16.29 ] ( qrt 9 )
Total Gov Revenue -1.00 -1.00 0.07 0.20 0.09

[ -1.00 , -1.00 ] [ -1.00 , -1.00 ] [ -1.74 , 6.75 ] [ -4.75 , 5.65 ] [ -6.04 , 7.85 ]
Total Gov Spending 0.00 0.00 0.13 0.12 0.00

[ -0.00 , 0.00 ] [ -0.00 , 0.00 ] [ -0.51 , 1.39 ] [ -0.68 , 3.14 ] [ -1.26 , 2.70 ]

(c) Impact Multipliers: DS

The PFA
GDP 0.62 0.28 -0.73 -0.98 -1.70 0.62

[ 0.26 , 0.99 ] [ -0.12 , 0.70 ] [ -1.70 , 0.29 ] [ -2.45 , 0.30 ] [ -3.97 , 0.18 ] ( qrt 1 )
Total Gov Spending 1.00 1.00 0.81 0.35 -0.24

[ 1.00 , 1.00 ] [ 1.00 , 1.00 ] [ 0.63 , 0.97 ] [ 0.10 , 0.62 ] [ -0.71 , 0.19 ]
Total Gov Revenue 0.00 0.00 -0.38 -0.84 -1.77

[ -0.00 , 0.00 ] [ -0.00 , 0.00 ] [ -0.93 , 0.22 ] [ -1.65 , 0.03 ] [ -3.24 , -0.42 ]
The ARRW Methodology
GDP 1.12 0.46 -0.01 0.02 -0.50 1.46

[ -4.33 , 5.67 ] [ -14.31 , 7.64 ] [ -16.69 , 13.45 ] [ -23.87 , 20.64 ] [ -23.49 , 24.07 ] ( qrt 3 )
Total Gov Spending 1.00 1.00 0.72 0.28 -0.14

[ 1.00 , 1.00 ] [ 1.00 , 1.00 ] [ -4.54 , 2.20 ] [ -5.98 , 2.85 ] [ -6.09 , 4.53 ]
Total Gov Revenue 0.00 0.00 0.01 -0.46 -1.16

[ -0.00 , 0.00 ] [ -0.00 , 0.00 ] [ -8.82 , 10.13 ] [ -14.48 , 13.97 ] [ -17.06 , 16.06 ]

Table 10: Fiscal Multipliers

their maximum value, the multipliers of the deficit-spending shocks are five times larger than the

ones reported using the PFA. As already mentioned, these biases are hard to interpret because the

multipliers being analyzed correspond to shocks that are linear combinations of shocks that are already

biased. Most important, the ARRW methodology reports confidence intervals that are huge relative

to the ones obtained using the PFA.

Panel (b) presents the impact multipliers associated with deficit-financed tax cut shocks. The

upper block of this panel replicates the results reported in Table 3 in Mountford and Uhlig (2009).

The bottom block of the panel reports the results obtained using the ARRW methodology. While

Mountford and Uhlig (2009) find positive GDP median multipliers for at least 20 quarters, we find
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negative ones during the four quarters following the initial shock. After four quarters the median

multipliers associated with the ARRW methodology also become positive. In addition, even when

they share a sign, the median multipliers associated with our methodology are much smaller than the

median multipliers implied by the PFA. In any case, as before, the confidence intervals computed using

the ARRW methodology are so large that it is very hard to say anything concrete about the sign and

size of the multipliers.

Panel (c) presents the impact multipliers associated with deficit-spending shocks. The upper block

of this panel replicates the results reported in Table 4 in Mountford and Uhlig (2009), and the bottom

block of the panel reports the results obtained using the ARRW methodology. In this policy scenario,

both methodologies find the same sign (except for the 12 quarters) for the median multiplier. However,

the magnitudes are different. The absolute value of the GDP median multipliers resulting from the

ARRW methodology is approximately twice as large as the one resulting from the PFA. But it is also

the case that the confidence intervals computed using the ARRW methodology are so wide that it is

very hard to reach any conclusion.

Summarizing, Mountford and Uhlig (2009) use their results regarding the fiscal multipliers to em-

phasize that deficit-financed tax cut shocks work best to increase economic activity. But as mentioned

before, the PFA is not agnostic. Once we use our truly agnostic methodology, it is very hard to support

Mountford and Uhlig’s (2009) claims. Some median multipliers change sign; nevertheless, the correct

confidence intervals are so wide that it is very hard to reach any conclusion from a statistical point of

view.

7.4 Computational Time

Our methodology is also faster than the PFA in the case of unanticipated fiscal policy shocks. In

this case, the PFA is approximately three times slower than our methodology. The results are closer,

but the ARRW methodology is still faster. In order to avoid local minima when using the PFA, we

start the non-linear optimization from eight random starting points and then we pick the best one.

Mountford and Uhlig (2009) follow a similar strategy.

The PFA The ARRW Methodology Ratio
Fiscal Policy Shocks 12498.06 3929.3 3.18

Table 11: Computational Time in Seconds
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8 Conclusion

We have presented an efficient algorithm for inference in SVARs identified with sign and zero restric-

tions that properly draws from the posterior distribution of structural parameters. The algorithm

extends the sign restrictions methodology developed by Rubio-Ramı́rez et al. (2010) to allow for zero

restrictions. Our key theoretical contribution shows how to efficiently draw from the uniform distri-

bution with respect to the Haar measure on the set of orthogonal matrices conditional on some linear

restrictions on their coefficients holding. This is the crucial step that allows us to draw from the

posterior distribution of structural parameters conditional on the sign and zero restrictions. We have

used this algorithm to answer the following questions. Are optimism shocks an important source of

business cycle fluctuations? Are deficit-financed tax cuts better than deficit spending to increase out-

put? These questions have been previously studied by Beaudry et al. (2011) and Mountford and Uhlig

(2009), respectively, using the PFA. These authors have provided very definitive answers. Unfortu-

nately, we have shown that these sharp conclusions are due to shortcomings in the PFA. In particular,

we have shown that the PFA (1) imposes additional sign restrictions on variables that are seemingly

unrestricted that bias the results, and (2) it chooses a single value of structural parameters, instead

of drawing from its posterior, creating artificially narrow confidence intervals that also affect inference

and the economic interpretation of the results. These shortcomings appear because the PFA does not

correctly draw from the posterior distribution of structural parameters conditional on the sign and

zero restrictions. This problem is common to all of the existing methods. Our algorithm is also faster

than the current methods.
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9 Appendices

9.1 Appendix A. Estimation and Inference: Optimism Shocks

Following Beaudry et al. (2011) we estimate equation (3) with four lags using Bayesian methods with

a Normal-Wishart prior as in Uhlig (2005). Specifically, we take 1,000 parameter draws from the

Normal-Wishart posterior of the reduced-form parameters (B,Σ) and from the conditional uniform

distribution of Q. We use the data set created by Beaudry et al. (2011). This data set contains

quarterly U.S. data for the sample period 1955Q1-2010Q4 and includes the following variables: TFP,

stock price, consumption, real federal funds rate, hours worked, investment, and output. TFP is the

factor-utilization-adjusted TFP series from John Fernald’s website. Stock price is the Standard and

Poor’s 500 composite index divided by the CPI of all items from the Bureau of Labor Statistics (BLS).

Consumption is real consumption spending on non-durable goods and services from the Bureau of

Economic Analysis (BEA). The real federal funds rate corresponds to the effective federal funds rate

minus the inflation rate as measured by the growth rate of the CPI all items from the BLS. Hours

worked is the hours of all persons in the non-farm business sector from the BLS. Investment is real

gross private domestic investment from the BEA. Output is real output in the non-farm business sector

from the BLS. The series corresponding to stock price, consumption, hours worked, investment, and

output are normalized by the civilian non-institutional population of 16 years and over from the BLS.

All variables are logarithmic levels except for the real interest rate, which is in levels but not logged.

9.2 Appendix B. Estimation and Inference: Fiscal Policy Shocks

Following Mountford and Uhlig (2009) we estimate equation (3) with six lags using Bayesian methods

with a Normal-Wishart prior as specified in Uhlig (2005). We take 1,000 parameter draws from

the Normal-Wishart posterior (B,Σ) and from the conditional uniform distribution of Q. We use

the same data set as Mountford and Uhlig (2009). This data set contains quarterly U.S. data for

the sample period 1955Q1-2010Q4 and includes the following variables: GDP, private consumption,

total government spending, total government revenue, real wages, private non-residential investment,

interest rate, adjusted reserves, producer price index of raw materials, and GDP deflator. All variables

are logarithmic levels except for the interest rate, which is expressed in levels but not logged.

9.3 Appendix C. Tables and Figures
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The ARRW Methodology

Identification 1 Identification 2 Identification 3
Adjusted TFP 0.08 0.10 0.13

[ 0.03 , 0.21 ] [ 0.03 , 0.23 ] [ 0.05 , 0.28 ]
Stock Price 0.12 0.17 0.23

[ 0.03 , 0.34 ] [ 0.04 , 0.39 ] [ 0.07 , 0.46 ]
Consumption 0.11 0.14 0.21

[ 0.02 , 0.35 ] [ 0.03 , 0.40 ] [ 0.05 , 0.49 ]
Real Interest Rate 0.13 0.13 0.14

[ 0.06 , 0.27 ] [ 0.05 , 0.27 ] [ 0.06 , 0.28 ]
Hours Worked 0.12 0.14 0.16

[ 0.03 , 0.33 ] [ 0.04 , 0.34 ] [ 0.05 , 0.37 ]
Investment 0.13 0.15 0.18

[ 0.05 , 0.30 ] [ 0.05 , 0.35 ] [ 0.07 , 0.38 ]
Output 0.12 0.16 0.22

[ 0.03 , 0.33 ] [ 0.05 , 0.39 ] [ 0.07 , 0.46 ]
Labor Productivity 0.10 0.12 0.20

[ 0.02 , 0.29 ] [ 0.03 , 0.34 ] [ 0.04 , 0.44 ]

The PFA

Identification 1 Identification 2 Identification 3
Adjusted TFP 0.17 0.21 0.29

[ 0.08 , 0.30 ] [ 0.08 , 0.38 ] [ 0.13 , 0.46 ]
Stock Price 0.52 0.62 0.57

[ 0.34 , 0.70 ] [ 0.48 , 0.73 ] [ 0.43 , 0.69 ]
Consumption 0.13 0.55 0.61

[ 0.06 , 0.28 ] [ 0.39 , 0.69 ] [ 0.43 , 0.76 ]
Real Interest Rate 0.10 0.06 0.26

[ 0.05 , 0.17 ] [ 0.03 , 0.13 ] [ 0.19 , 0.34 ]
Hours Worked 0.16 0.38 0.30

[ 0.09 , 0.26 ] [ 0.25 , 0.53 ] [ 0.18 , 0.44 ]
Investment 0.25 0.45 0.39

[ 0.16 , 0.37 ] [ 0.34 , 0.57 ] [ 0.26 , 0.52 ]
Output 0.23 0.59 0.60

[ 0.13 , 0.39 ] [ 0.46 , 0.72 ] [ 0.44 , 0.73 ]
Labor Productivity 0.24 0.37 0.49

[ 0.12 , 0.39 ] [ 0.17 , 0.55 ] [ 0.27 , 0.65 ]

Table 13: Share of FEV Attributable to Optimism Shocks at Horizon 40: Seven-Variable SVAR

62



T
he

A
R

RW
M

et
ho

do
lo

gy

Id
en

ti
fic

at
io

n
I

Id
en

ti
fic

at
io

n
II

Id
en

ti
fic

at
io

n
II

I
h=

0
h=

4
h=

8
h=

16
h=

24
h=

40
h=

0
h=

4
h=

8
h=

16
h=

24
h=

40
h=

0
h=

4
h=

8
h=

16
h=

24
h=

40
A

dj
us

te
d

T
F

P
0.

00
0.

02
0.

03
0.

05
0.

06
0.

08
0.

00
0.

02
0.

03
0.

05
0.

07
0.

10
0.

00
0.

02
0.

03
0.

06
0.

08
0.

13
[0

.0
0

,0
.0

0
]

[0
.0

1
,0

.0
7

]
[0

.0
1

,0
.0

8
]

[0
.0

2
,0

.1
3

]
[0

.0
2

,0
.1

6
]

[0
.0

3
,0

.2
1

]
[0

.0
0

,0
.0

0
]

[0
.0

1
,0

.0
7

]
[0

.0
1

,0
.0

9
]

[0
.0

2
,0

.1
3

]
[0

.0
2

,0
.1

6
]

[0
.0

3
,0

.2
3

]
[0

.0
0

,0
.0

0
]

[0
.0

1
,0

.0
7

]
[0

.0
1

,0
.0

9
]

[0
.0

2
,0

.1
4

]
[0

.0
3

,0
.1

9
]

[0
.0

5
,0

.2
8

]
St

oc
k

P
ri

ce
0.

10
0.

11
0.

10
0.

11
0.

11
0.

12
0.

12
0.

15
0.

16
0.

17
0.

17
0.

17
0.

13
0.

19
0.

21
0.

23
0.

24
0.

23
[0

.0
1

,0
.3

6
]

[0
.0

2
,0

.3
5

]
[0

.0
2

,0
.3

4
]

[0
.0

2
,0

.3
6

]
[0

.0
3

,0
.3

5
]

[0
.0

3
,0

.3
4

]
[0

.0
1

,0
.3

9
]

[0
.0

3
,0

.4
1

]
[0

.0
4

,0
.4

0
]

[0
.0

4
,0

.4
2

]
[0

.0
4

,0
.4

2
]

[0
.0

4
,0

.3
9

]
[0

.0
1

,0
.3

9
]

[0
.0

5
,0

.4
6

]
[0

.0
6

,0
.4

6
]

[0
.0

7
,0

.4
6

]
[0

.0
8

,0
.4

8
]

[0
.0

7
,0

.4
6

]
C

on
su

m
pt

io
n

0.
10

0.
11

0.
11

0.
11

0.
11

0.
11

0.
10

0.
16

0.
17

0.
16

0.
15

0.
14

0.
13

0.
20

0.
23

0.
24

0.
24

0.
21

[0
.0

1
,0

.3
4

]
[0

.0
1

,0
.3

5
]

[0
.0

2
,0

.3
6

]
[0

.0
2

,0
.3

7
]

[0
.0

2
,0

.3
7

]
[0

.0
2

,0
.3

5
]

[0
.0

1
,0

.3
5

]
[0

.0
3

,0
.4

1
]

[0
.0

3
,0

.4
2

]
[0

.0
3

,0
.4

2
]

[0
.0

3
,0

.4
2

]
[0

.0
3

,0
.4

0
]

[0
.0

1
,0

.3
7

]
[0

.0
5

,0
.4

7
]

[0
.0

6
,0

.5
0

]
[0

.0
7

,0
.5

1
]

[0
.0

6
,0

.5
0

]
[0

.0
5

,0
.4

9
]

R
ea

l
In

te
re

st
R

at
e

0.
09

0.
10

0.
11

0.
11

0.
12

0.
13

0.
09

0.
10

0.
11

0.
11

0.
12

0.
13

0.
11

0.
11

0.
12

0.
12

0.
13

0.
14

[0
.0

1
,0

.3
4

]
[0

.0
3

,0
.3

0
]

[0
.0

4
,0

.2
9

]
[0

.0
4

,0
.2

8
]

[0
.0

5
,0

.2
8

]
[0

.0
6

,0
.2

7
]

[0
.0

1
,0

.3
5

]
[0

.0
3

,0
.3

0
]

[0
.0

3
,0

.3
0

]
[0

.0
4

,0
.2

9
]

[0
.0

5
,0

.2
8

]
[0

.0
5

,0
.2

7
]

[0
.0

1
,0

.3
7

]
[0

.0
3

,0
.3

2
]

[0
.0

3
,0

.3
2

]
[0

.0
4

,0
.3

0
]

[0
.0

5
,0

.2
9

]
[0

.0
6

,0
.2

8
]

H
ou

rs
W

or
ke

d
0.

09
0.

11
0.

12
0.

12
0.

11
0.

12
0.

09
0.

15
0.

17
0.

16
0.

15
0.

14
0.

09
0.

14
0.

17
0.

17
0.

17
0.

16
[0

.0
1

,0
.3

6
]

[0
.0

3
,0

.3
4

]
[0

.0
3

,0
.3

5
]

[0
.0

3
,0

.3
3

]
[0

.0
3

,0
.3

3
]

[0
.0

3
,0

.3
3

]
[0

.0
1

,0
.3

7
]

[0
.0

4
,0

.4
4

]
[0

.0
4

,0
.4

4
]

[0
.0

4
,0

.4
0

]
[0

.0
4

,0
.3

8
]

[0
.0

4
,0

.3
4

]
[0

.0
1

,0
.3

7
]

[0
.0

3
,0

.4
4

]
[0

.0
4

,0
.4

6
]

[0
.0

4
,0

.4
4

]
[0

.0
5

,0
.4

2
]

[0
.0

5
,0

.3
7

]
In

ve
st

m
en

t
0.

08
0.

11
0.

11
0.

12
0.

12
0.

13
0.

08
0.

13
0.

15
0.

16
0.

16
0.

15
0.

07
0.

12
0.

16
0.

17
0.

18
0.

18
[0

.0
1

,0
.2

6
]

[0
.0

3
,0

.3
1

]
[0

.0
3

,0
.3

2
]

[0
.0

4
,0

.3
1

]
[0

.0
4

,0
.3

1
]

[0
.0

5
,0

.3
0

]
[0

.0
1

,0
.2

6
]

[0
.0

4
,0

.3
6

]
[0

.0
5

,0
.3

8
]

[0
.0

5
,0

.3
6

]
[0

.0
5

,0
.3

5
]

[0
.0

5
,0

.3
5

]
[0

.0
1

,0
.2

5
]

[0
.0

4
,0

.3
4

]
[0

.0
5

,0
.3

9
]

[0
.0

5
,0

.3
8

]
[0

.0
6

,0
.3

8
]

[0
.0

7
,0

.3
8

]
O

ut
pu

t
0.

04
0.

10
0.

10
0.

11
0.

12
0.

12
0.

04
0.

15
0.

17
0.

18
0.

17
0.

16
0.

04
0.

17
0.

21
0.

23
0.

23
0.

22
[0

.0
0

,0
.1

3
]

[0
.0

2
,0

.3
2

]
[0

.0
2

,0
.3

3
]

[0
.0

3
,0

.3
2

]
[0

.0
3

,0
.3

3
]

[0
.0

3
,0

.3
3

]
[0

.0
0

,0
.1

4
]

[0
.0

3
,0

.3
9

]
[0

.0
4

,0
.4

0
]

[0
.0

5
,0

.4
0

]
[0

.0
5

,0
.4

0
]

[0
.0

5
,0

.3
9

]
[0

.0
0

,0
.1

4
]

[0
.0

3
,0

.4
0

]
[0

.0
6

,0
.4

4
]

[0
.0

7
,0

.4
6

]
[0

.0
8

,0
.4

6
]

[0
.0

7
,0

.4
6

]
L

ab
or

P
ro

du
ct

iv
it

y
0.

02
0.

06
0.

07
0.

07
0.

08
0.

10
0.

02
0.

06
0.

07
0.

08
0.

10
0.

12
0.

02
0.

06
0.

08
0.

10
0.

13
0.

20
[0

.0
0

,0
.0

6
]

[0
.0

1
,0

.1
8

]
[0

.0
2

,0
.1

9
]

[0
.0

2
,0

.2
2

]
[0

.0
2

,0
.2

5
]

[0
.0

2
,0

.2
9

]
[0

.0
0

,0
.0

6
]

[0
.0

1
,0

.1
9

]
[0

.0
2

,0
.2

1
]

[0
.0

2
,0

.2
5

]
[0

.0
3

,0
.2

9
]

[0
.0

3
,0

.3
4

]
[0

.0
0

,0
.0

6
]

[0
.0

1
,0

.2
2

]
[0

.0
2

,0
.2

5
]

[0
.0

3
,0

.3
1

]
[0

.0
3

,0
.3

6
]

[0
.0

4
,0

.4
4

]

T
he

PF
A

Id
en

ti
fic

at
io

n
I

Id
en

ti
fic

at
io

n
II

Id
en

ti
fic

at
io

n
II

I
h=

0
h=

4
h=

8
h=

16
h=

24
h=

40
h=

0
h=

4
h=

8
h=

16
h=

24
h=

40
h=

0
h=

4
h=

8
h=

16
h=

24
h=

40
A

dj
us

te
d

T
F

P
0.

00
0.

02
0.

02
0.

05
0.

09
0.

17
0.

00
0.

02
0.

03
0.

05
0.

09
0.

21
0.

00
0.

01
0.

02
0.

05
0.

12
0.

29
[0

.0
0

,0
.0

0
]

[0
.0

1
,0

.0
3

]
[0

.0
1

,0
.0

5
]

[0
.0

3
,0

.1
0

]
[0

.0
4

,0
.1

8
]

[0
.0

8
,0

.3
0

]
[0

.0
0

,0
.0

0
]

[0
.0

1
,0

.0
3

]
[0

.0
2

,0
.0

5
]

[0
.0

2
,0

.0
9

]
[0

.0
4

,0
.1

8
]

[0
.0

8
,0

.3
8

]
[0

.0
0

,0
.0

0
]

[0
.0

1
,0

.0
3

]
[0

.0
1

,0
.0

5
]

[0
.0

3
,0

.1
1

]
[0

.0
5

,0
.2

4
]

[0
.1

3
,0

.4
6

]
St

oc
k

P
ri

ce
1.

00
0.

87
0.

82
0.

74
0.

65
0.

52
0.

63
0.

72
0.

72
0.

71
0.

69
0.

62
0.

39
0.

57
0.

60
0.

63
0.

62
0.

57
[0

.9
9

,1
.0

0
]

[0
.8

2
,0

.9
1

]
[0

.7
5

,0
.8

7
]

[0
.6

3
,0

.8
2

]
[0

.5
1

,0
.7

7
]

[0
.3

4
,0

.7
0

]
[0

.5
9

,0
.6

6
]

[0
.6

6
,0

.7
8

]
[0

.6
3

,0
.7

9
]

[0
.6

1
,0

.8
0

]
[0

.5
7

,0
.7

9
]

[0
.4

8
,0

.7
3

]
[0

.3
4

,0
.4

5
]

[0
.4

9
,0

.6
3

]
[0

.5
0

,0
.6

7
]

[0
.5

2
,0

.7
2

]
[0

.5
0

,0
.7

2
]

[0
.4

3
,0

.6
9

]
C

on
su

m
pt

io
n

0.
04

0.
19

0.
23

0.
22

0.
19

0.
13

0.
53

0.
72

0.
74

0.
70

0.
64

0.
55

0.
44

0.
62

0.
68

0.
71

0.
69

0.
61

[0
.0

2
,0

.0
7

]
[0

.1
3

,0
.2

6
]

[0
.1

5
,0

.3
1

]
[0

.1
3

,0
.3

2
]

[0
.1

0
,0

.3
1

]
[0

.0
6

,0
.2

8
]

[0
.4

9
,0

.5
8

]
[0

.6
5

,0
.7

7
]

[0
.6

6
,0

.8
0

]
[0

.6
0

,0
.7

8
]

[0
.5

3
,0

.7
5

]
[0

.3
9

,0
.6

9
]

[0
.3

9
,0

.4
9

]
[0

.5
5

,0
.7

0
]

[0
.6

0
,0

.7
7

]
[0

.5
9

,0
.8

0
]

[0
.5

5
,0

.7
9

]
[0

.4
3

,0
.7

6
]

R
ea

l
In

te
re

st
R

at
e

0.
00

0.
03

0.
04

0.
05

0.
07

0.
10

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
36

0.
30

0.
30

0.
28

0.
27

0.
26

[0
.0

0
,0

.0
1

]
[0

.0
2

,0
.0

5
]

[0
.0

2
,0

.0
6

]
[0

.0
3

,0
.0

8
]

[0
.0

4
,0

.1
2

]
[0

.0
5

,0
.1

7
]

[0
.0

0
,0

.0
3

]
[0

.0
1

,0
.0

4
]

[0
.0

1
,0

.0
6

]
[0

.0
2

,0
.0

7
]

[0
.0

2
,0

.0
9

]
[0

.0
3

,0
.1

3
]

[0
.3

1
,0

.4
1

]
[0

.2
4

,0
.3

5
]

[0
.2

3
,0

.3
6

]
[0

.2
2

,0
.3

5
]

[0
.2

1
,0

.3
4

]
[0

.1
9

,0
.3

4
]

H
ou

rs
W

or
ke

d
0.

01
0.

23
0.

29
0.

24
0.

20
0.

16
0.

04
0.

46
0.

60
0.

56
0.

50
0.

38
0.

02
0.

30
0.

43
0.

41
0.

38
0.

30
[0

.0
0

,0
.0

3
]

[0
.1

7
,0

.3
0

]
[0

.2
1

,0
.3

7
]

[0
.1

6
,0

.3
4

]
[0

.1
2

,0
.3

0
]

[0
.0

9
,0

.2
6

]
[0

.0
2

,0
.0

7
]

[0
.3

9
,0

.5
4

]
[0

.5
2

,0
.6

9
]

[0
.4

6
,0

.6
5

]
[0

.3
8

,0
.6

0
]

[0
.2

5
,0

.5
3

]
[0

.0
1

,0
.0

4
]

[0
.2

2
,0

.3
7

]
[0

.3
2

,0
.5

2
]

[0
.2

9
,0

.5
3

]
[0

.2
5

,0
.5

1
]

[0
.1

8
,0

.4
4

]
In

ve
st

m
en

t
0.

00
0.

27
0.

35
0.

33
0.

30
0.

25
0.

01
0.

38
0.

51
0.

50
0.

49
0.

45
0.

01
0.

21
0.

33
0.

36
0.

39
0.

39
[0

.0
0

,0
.0

1
]

[0
.2

0
,0

.3
4

]
[0

.2
6

,0
.4

3
]

[0
.2

5
,0

.4
2

]
[0

.2
2

,0
.4

0
]

[0
.1

6
,0

.3
7

]
[0

.0
0

,0
.0

2
]

[0
.3

0
,0

.4
5

]
[0

.4
1

,0
.5

9
]

[0
.4

0
,0

.6
0

]
[0

.3
9

,0
.5

9
]

[0
.3

4
,0

.5
7

]
[0

.0
0

,0
.0

2
]

[0
.1

5
,0

.2
8

]
[0

.2
5

,0
.4

4
]

[0
.2

5
,0

.4
7

]
[0

.2
6

,0
.5

0
]

[0
.2

6
,0

.5
2

]
O

ut
pu

t
0.

01
0.

28
0.

35
0.

33
0.

31
0.

23
0.

03
0.

56
0.

67
0.

69
0.

66
0.

59
0.

02
0.

40
0.

53
0.

60
0.

63
0.

60
[0

.0
1

,0
.0

2
]

[0
.2

1
,0

.3
5

]
[0

.2
6

,0
.4

3
]

[0
.2

4
,0

.4
5

]
[0

.2
1

,0
.4

3
]

[0
.1

3
,0

.3
9

]
[0

.0
2

,0
.0

5
]

[0
.4

8
,0

.6
2

]
[0

.6
0

,0
.7

4
]

[0
.6

0
,0

.7
6

]
[0

.5
6

,0
.7

5
]

[0
.4

6
,0

.7
2

]
[0

.0
1

,0
.0

3
]

[0
.3

3
,0

.4
8

]
[0

.4
4

,0
.6

3
]

[0
.4

9
,0

.7
0

]
[0

.5
0

,0
.7

3
]

[0
.4

4
,0

.7
3

]
L

ab
or

P
ro

du
ct

iv
it

y
0.

00
0.

05
0.

06
0.

10
0.

16
0.

24
0.

00
0.

11
0.

09
0.

12
0.

20
0.

37
0.

00
0.

10
0.

10
0.

18
0.

29
0.

49
[0

.0
0

,0
.0

1
]

[0
.0

2
,0

.1
0

]
[0

.0
2

,0
.1

1
]

[0
.0

4
,0

.1
9

]
[0

.0
7

,0
.2

8
]

[0
.1

2
,0

.3
9

]
[0

.0
0

,0
.0

1
]

[0
.0

6
,0

.1
6

]
[0

.0
4

,0
.1

5
]

[0
.0

5
,0

.2
2

]
[0

.0
8

,0
.3

4
]

[0
.1

7
,0

.5
5

]
[0

.0
0

,0
.0

0
]

[0
.0

6
,0

.1
6

]
[0

.0
5

,0
.1

8
]

[0
.0

9
,0

.3
0

]
[0

.1
4

,0
.4

6
]

[0
.2

7
,0

.6
5

]

T
ab

le
14

:
S
h
ar

e
of

F
E

V
A

tt
ri

b
u
ta

b
le

to
O

p
ti

m
is

m
S
h
o
ck

s:
S
ev

en
-V

ar
ia

b
le

S
V

A
R

63



(a
)

Id
en

ti
fi

ca
ti

o
n

1
(b

)
Id

en
ti

fi
ca

ti
on

2
(c

)
Id

en
ti

fi
ca

ti
o
n

3

F
ig

u
re

17
:

IR
F

s
to

an
O

p
ti

m
is

m
S
h
o
ck

U
si

n
g

th
e

P
F
A

:
S
ev

en
-V

ar
ia

b
le

S
V

A
R

64



(a
)

Id
en

ti
fi

ca
ti

o
n

1
(b

)
Id

en
ti

fi
ca

ti
on

2
(c

)
Id

en
ti

fi
ca

ti
o
n

3

F
ig

u
re

18
:

IR
F

s
to

an
O

p
ti

m
is

m
S
h
o
ck

U
si

n
g

th
e

A
R

R
W

M
et

h
o
d
ol

og
y
:

S
ev

en
-V

ar
ia

b
le

S
V

A
R

65



(a
)

Id
en

ti
fi

ca
ti

o
n

1
(b

)
Id

en
ti

fi
ca

ti
on

2
(c

)
Id

en
ti

fi
ca

ti
o
n

3

F
ig

u
re

19
:

C
om

p
ar

is
on

of
IR

F
s

to
an

O
p
ti

m
is

m
S
h
o
ck

:
S
ev

en
-V

ar
ia

b
le

S
V

A
R

N
ot

e:
M

ed
ia

n
P

F
A

re
fe

rs
to

th
e

m
ed

ia
n

IR
F

ob
ta

in
ed

u
si

n
g

th
e

P
F
A

.

66



(a
)

Id
en

ti
fi

ca
ti

o
n

1
(b

)
Id

en
ti

fi
ca

ti
on

2
(c

)
Id

en
ti

fi
ca

ti
o
n

3

F
ig

u
re

20
:

D
is

tr
ib

u
ti

on
of

IR
F

s
w

it
h

th
e

A
R

R
W

M
et

h
o
d
ol

og
y

v
s.

S
in

gl
e

IR
F

s
w

it
h

th
e

P
F
A

:
S
ev

en
-V

ar
ia

b
le

S
V

A
R

N
ot

e:
O

L
S

P
F
A

re
fe

rs
to

th
e

IR
F

ob
ta

in
ed

u
si

n
g

th
e

P
F
A

an
d

th
e

O
L

S
re

d
u
ce

d
-f

or
m

es
ti

m
at

es
.

67



(a
)

T
h

e
P

F
A

(b
)

A
R

R
W

w
it

h
A

d
d

it
io

n
a
l

R
es

tr
ic

ti
o
n

s

F
ig

u
re

21
:

R
ep

li
ca

ti
n
g

th
e

P
F
A

U
si

n
g

th
e

A
R

R
W

M
et

h
o
d
ol

og
y
:

S
ev

en
-V

ar
ia

b
le

S
V

A
R

68



References

Barsky, R. B. and E. R. Sims (2011). News Shocks and Business Cycles. Journal of Monetary

Economics 58 (3), 273–289.

Baumeister, C. and L. Benati (2010). Unconventional Monetary Policy and the Great Recession.

European Central Bank Working Papers (1258).

Baumeister, C. and J. Hamilton (2013). Sign Restrictions, Structural Vector Sign Restrictions, Struc-

tural Vector Autoregressions, and Useful Prior Information. UCSD mimeo.

Beaudry, P., D. Nam, and J. Wang (2011). Do Mood Swings Drive Business Cycles and is it Rational?

NBER Working Papers .

Benati, L. (2013). Why are Recessions Associated with Financial Crises Different? Working Paper .

Bernanke, B. S. and I. Mihov (1998). Measuring Monetary Policy. Quarterly Journal of Eco-

nomics 113 (3), 869–902.

Binning, A. (2013). Underidentified SVAR Models: A Framework for Combining Short and Long-run

Restrictions with Sign-restrictions. Norges Bank Working Papers .

Bowman, A. W. and A. Azzalini (1997). Applied Smoothing Techniques for Data Analysis: The Kernel

Approach with S-Plus Illustrations. Oxford University Press.

Caldara, D. and C. Kamps (2012). The Analytics of SVAR: A Unified Framework to Measure Fiscal

Multipliers. Finance and Economics Discussion Series 2012-20 .
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