Estimation over sub-samples, structural change
Computing log-posterior over sub-samples
Using information provided by estimation_info_
New dsge_likelihood.m function:
- Initialize kalman_algo
- Check boundaries for all estimated parameters
- Initialize M_.Sigma_e, M_.H and M_.params for 1st sub-sample (new separate function)
- call dsge_likelihood_sub()
- For each sub-sample
- Update M_.Sigma_e, M_.H and M_.params
- call dsge_likelihood_sub()
New dsge_likelihood_sub.m
- Compute T, R and steady_state (using dynare_resolve())
- Demean/detrend observations (new separate function)
Initialize Kalman filter (Pstar, Pinf) (new separate function) [first subsample only]
Run diffuse filter if necessary. [first subsample only]
- Run Kalman filter
New dsge_log_posterior function:
- call (new) dsge_likelihood.m
- add log-prior density
New dsge_smoother.m function:
- Initialize kalman_algo
- Check boundaries for all estimated parameters
- Initialize M_.Sigma_e, M_.H and M_.params for 1st sub-sample (new separate function)
- Compute T, R and steady_state (using dynare_resolve())
- Demean/detrend observations (new separate function)
- Initialize Kalman filter (Pstar, Pinf) (new separate function)
- Run diffuse filter if necessary. Report error if doesn't converge in first sub-sample.
- Run Kalman filter (make separate function) on 1st sub-sample
- For each sub-sample
- Update M_.Sigma_e, M_.H and M_.params
- Compute T, R and steady_state
- Demean/detrend observations
- Run Kalman filter
- For each sub-sample backwards:
- Update M_.Sigma_e, M_.H and M_.params
- Compute T, R and steady_state
- Demean/detrend observations
- Run Kalman smoother (make separate function)
- If necessary call diffuse smoother