⇤ ← Revision 1 as of 2012-08-27 10:33:03
Size: 1956
Comment:
|
Size: 2602
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 7: | Line 7: |
New dsge_likelihood.m function: | New dsge_likelihood.m function (version 1): |
Line 21: | Line 21: |
New dsge_likelihood.m function (version 2): 1. Initialize kalman_algo 1. Check boundaries for all estimated parameters 1. Initialize M_.Sigma_e, M_.H and M_.params for 1st sub-sample (new separate function) 1. call dsge_likelihood_sub() 1. For each sub-sample i. Update M_.Sigma_e, M_.H and M_.params i. call dsge_likelihood_sub() New dsge_likelihood_sub.m 1. Compute T, R and steady_state (using dynare_resolve()) 1. Demean/detrend observations (new separate function) 1. Initialize Kalman filter (Pstar, Pinf) (new separate function) 1. Run diffuse filter if necessary. 1. Run Kalman filter |
Estimation over sub-samples, structural change
Computing log-posterior over sub-samples
Using information provided by estimation_info_
New dsge_likelihood.m function (version 1):
- Initialize kalman_algo
- Check boundaries for all estimated parameters
- Initialize M_.Sigma_e, M_.H and M_.params for 1st sub-sample (new separate function)
- Compute T, R and steady_state (using dynare_resolve())
- Demean/detrend observations (new separate function)
- Initialize Kalman filter (Pstar, Pinf) (new separate function)
- Run diffuse filter if necessary. Report error if doesn't converge in first sub-sample.
- Run Kalman filter (make separate function) on 1st sub-sample
- For each sub-sample
- Update M_.Sigma_e, M_.H and M_.params
- Compute T, R and steady_state
- Demean/detrend observations
- Run Kalman filter
New dsge_likelihood.m function (version 2):
- Initialize kalman_algo
- Check boundaries for all estimated parameters
- Initialize M_.Sigma_e, M_.H and M_.params for 1st sub-sample (new separate function)
- call dsge_likelihood_sub()
- For each sub-sample
- Update M_.Sigma_e, M_.H and M_.params
- call dsge_likelihood_sub()
New dsge_likelihood_sub.m
- Compute T, R and steady_state (using dynare_resolve())
- Demean/detrend observations (new separate function)
- Initialize Kalman filter (Pstar, Pinf) (new separate function)
- Run diffuse filter if necessary.
- Run Kalman filter
New dsge_log_posterior function:
- call (new) dsge_likelihood.m
- add log-prior density
New dsge_smoother.m function:
- Initialize kalman_algo
- Check boundaries for all estimated parameters
- Initialize M_.Sigma_e, M_.H and M_.params for 1st sub-sample (new separate function)
- Compute T, R and steady_state (using dynare_resolve())
- Demean/detrend observations (new separate function)
- Initialize Kalman filter (Pstar, Pinf) (new separate function)
- Run diffuse filter if necessary. Report error if doesn't converge in first sub-sample.
- Run Kalman filter (make separate function) on 1st sub-sample
- For each sub-sample
- Update M_.Sigma_e, M_.H and M_.params
- Compute T, R and steady_state
- Demean/detrend observations
- Run Kalman filter
- For each sub-sample backwards:
- Update M_.Sigma_e, M_.H and M_.params
- Compute T, R and steady_state
- Demean/detrend observations
- Run Kalman smoother (make separate function)
- If necessary call diffuse smoother