It assumes you are at the steady state for all other shocks/states (unless you provide a different starting point as the fourth input argument). Due to linearity of the first order aprroximation, considering technology would not change anything. Only starting at second order, this would matter (but then you also should take the gs2 uncertainty correction into account).
No, there is no easy way to plot the value function. You could try to define the policy function recursively in your model equations and then plot it. For the very easy model you consider, adding
- Code: Select all
V=c+BETA*V(+1);
should be sufficient, where V is the value function and c=log(exp(c)) is the utility function. For a smooth model, this equation holds with equality in the optimum and is thus a FOC characterizing V like the other FOCs characterize the other variables.
You could make it deterministic using the simul-command, but then you won't get policy functions, but a numerical simulation. So for you problem the answer is no. However, for first order everything is certainty equivalent. Thus, the shock plays no role as agents behave as if the expectation of the future realization of the shocks is certain to be at the expected value.
Dynare only supports perturbation, thus requiring that all functions are sufficiently smooth. It would not work with discrete Markov Chains. So the answer is no.