- Code: Select all
% 1. Defining variables
%----------------------------------------------------------------
var y c k i l B q nx n y_k c_y z g;
varexo e_z e_g;
parameters alpha beta delta gamma psi sigma phi r mu b rhoz rhog sigmaz sigmag m1 m2;
%----------------------------------------------------------------
% 2. Calibration
%----------------------------------------------------------------
alpha = 0.68;
beta = 0.98;
delta = 0.05;
gamma = 0.36;
psi = 0.001;
sigma = 2;
phi = 4;
r = 0.01;
mu = 1.006;
b = 0.1;
rhoz = 0.95;
rhog = 0.01;
sigmaz = 0.001;
sigmag = 0.001;
m1=gamma*(1-sigma)-1;
m2=(1-gamma)*(1-sigma);
%----------------------------------------------------------------
% 3. Model
%----------------------------------------------------------------
model;
c^(m1)*l^(m2)*g^(-m1)*(phi*(g*k(+1)/k-mu)+1) = beta*c(+1)^(m1)*l(+1)^(m2)
*((1-alpha)*y(+1)/k+1-delta+phi/2*((g(+1)*k(+2)/k(+1))^2-mu^2));
c^(m1)*l^(m2)*g^(-m1)*q = beta*c(+1)^(m1)*l(+1)^(m2);
c/l = gamma/(1-gamma)*alpha*y/(1-l);
l = 1-n;
y = z*k(-1)^(1-alpha)*(g*n)^(alpha);
i = g*k-(1-delta)*k(-1)+(phi/2)*(g*(k/k(-1))-mu)^2*k(-1);
nx = (y-c-i)/y;
(1/q) = 1+r+psi*(exp(B(+1)-b)-1);
B=b*y;
y_k=y/k;
c_y=c/y;
z = rhoz*z(-1)+e_z;
g = rhog*g+e_g;
end;
%----------------------------------------------------------------
% 4. Computation
%----------------------------------------------------------------
initval;
z=1;
g=1;
q=beta*mu^(m1);
y_k=((1/q)-(1-delta))/(1-alpha);
c_y=1+(1-mu-delta)/y_k-(1-mu*q)*b;
n=(1+c_y*(1-gamma)/alpha*gamma)^(-1);
k=(mu/y_k)^(1/alpha)*n;
y=y_k*k;
c=c_y*y;
i=(mu-1+delta)*k;
nx=(y-c-i)/y;
e_z=0;
e_g=0;
end;
shocks;
var e_z = sigmaz^2;
var e_g = sigmag^2;
end;
steady;
stoch_simul(hp_filter = 1600, order = 1);
%----------------------------------------------------------------
% 5. Some Results
%----------------------------------------------------------------
statistic1 = 100*sqrt(diag(oo_.var(1:6,1:6)))./oo_.mean(1:6);
dyntable('Relative standard deviations in %',strvcat('VARIABLE','REL. S.D.'),M_.endo_names(1:6,:),statistic1,10,8,4);
I get the following error:
"Impossible to find the steady state. Either the model doesn't have a steady state, there are an infinity of steady states, or the guess values are too far from the solution". The thing is that both the equations of the model and the steady states, I got them from the authors' website. So I don't understand why this isn't working.
Any help would be very welcome.
Thanks and regards,