To set it to a small identity, just set
- Code: Select all
hh=1e-4*eye(size(hh))
hh=1e-4*eye(size(hh))
if ~options_.mh_posterior_mode_estimation && options_.cova_compute
[cholmat,negeigennvalues]=cholcov(hh,0);
if negeigennvalues~=0 && ~isnan(negeigennvalues)
[V,D] = eig(hh);
D=abs(D);
temp=diag(D);
temp(temp<1e-8)=1e-8;
D=diag(temp);
hh=1e-4*eye(size(hh));
[hh,negeigenvalues1]=cholcov(hh,0);
end
if ~options_.mh_posterior_mode_estimation && options_.cova_compute
try
chol(hh);
catch
disp(' ')
disp('POSTERIOR KERNEL OPTIMIZATION PROBLEM!')
disp(' (minus) the hessian matrix at the "mode" is not positive definite!')
disp('=> posterior variance of the estimated parameters are not positive.')
disp('You should try to change the initial values of the parameters using')
disp('the estimated_params_init block, or use another optimization routine.')
warning('The results below are most likely wrong!');
end
end
Configuring Dynare ...
[mex] Generalized QZ.
[mex] Sylvester equation solution.
[mex] Kronecker products.
[mex] Sparse kronecker products.
[mex] Local state space iteration (second order).
[mex] Bytecode evaluation.
[mex] k-order perturbation solver.
[mex] k-order solution simulation.
[mex] Quasi Monte-Carlo sequence (Sobol).
[mex] Markov Switching SBVAR.
Starting Dynare (version 4.3.3).
Starting preprocessing of the model file ...
Substitution of endo lags >= 2: added 3 auxiliary variables and equations.
Found 20 equation(s).
Evaluating expressions...done
Computing static model derivatives:
- order 1
Computing dynamic model derivatives:
- order 1
- order 2
Processing outputs ...done
Preprocessing completed.
Starting MATLAB/Octave computing.
You did not declare endogenous variables after the estimation/calib_smoother command.
Prior distribution for parameter rho_g has two modes!
Warning: File 'usvs1/prior' not found.
> In CheckPath at 41
In set_prior at 264
In dynare_estimation_init at 123
In dynare_estimation_1 at 59
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
Loading 67 observations from simdata.m
Initial value of the log posterior (or likelihood): -16917479858827.47
-----------------
-----------------
f at the beginning of new iteration, 16917479858827.4726562500
Predicted improvement: 725111275279083473207296.000000000
lambda = 1; f = 354799973695706816.0000000
lambda = 0.33333; f = 39437255816629904.0000000
lambda = 0.11111; f = 4396954658578081.5000000
lambda = 0.037037; f = 503588139409747.3125000
lambda = 0.012346; f = 70991951559073.2187500
lambda = 0.0041152; f = 22925739150193.5273438
lambda = 0.0013717; f = 17585059111086.7675781
lambda = 0.00045725; f = 16991653627368.1953125
lambda = 0.00015242; f = 16925720821237.9707031
lambda = 5.0805e-05; f = 16918395332725.2246094
lambda = 1.6935e-05; f = 16917581515835.4941406
lambda = 5.645e-06; f = 16917491133829.4179688
lambda = 1.8817e-06; f = 16917481105415.2265625
lambda = 6.2723e-07; f = 16917479995823.9375000
lambda = 2.0908e-07; f = 16917479873822.2539062
lambda = 6.9692e-08; f = 16917479860426.5898438
lambda = 2.3231e-08; f = 16917479858984.1835938
lambda = 7.7435e-09; f = 16917479858839.1464844
lambda = 2.5812e-09; f = 16917479858827.7714844
lambda =
-6.2723e-07
lambda = -6.2723e-07; f = 16917536766842.5214844
lambda = -2.0908e-07; f = 16917486180643.0429688
lambda = -6.9692e-08; f = 16917480560822.5234375
lambda = -2.3231e-08; f = 16917479936685.8984375
lambda = -7.7435e-09; f = 16917479867432.6699219
lambda = -2.5812e-09; f = 16917479859769.2148438
Norm of dx 1.2043e+10
----
Improvement on iteration 1 = 0.000000000
improvement < crit termination
smallest step still improving too slow, reversed gradient
Objective function at mode: 16917479858827.472656
MODE CHECK
Fval obtained by the minimization routine: 16917479858827.472656
RESULTS FROM POSTERIOR MAXIMIZATION
parameters
prior mean mode s.d. t-stat prior pstdev
eta 2.450 2.4500 10.0000 0.2450 norm 0.7500
sigma_c 1.620 1.6200 10.0000 0.1620 norm 0.3750
h 0.690 0.6900 10.0000 0.0690 beta 0.1000
omicron 5.860 5.8600 10.0000 0.5860 norm 2.0000
omega 3.230 3.2300 10.0000 0.3230 norm 0.1000
rho_rn 0.880 0.8800 10.0000 0.0880 norm 0.1000
phi_pi 1.480 1.4800 10.0000 0.1480 norm 0.1000
phi_y 0.080 0.0800 10.0000 0.0080 norm 0.0500
tau 0.660 0.6600 10.0000 0.0660 beta 0.1000
xi 0.870 0.8700 10.0000 0.0870 beta 0.1000
rho_kappa 0.490 0.4900 10.0000 0.0490 beta 0.1000
rho_z 0.750 0.7500 10.0000 0.0750 beta 0.1000
rho_s 0.866 0.8660 10.0000 0.0866 beta 0.1000
rho_a 0.822 0.8220 10.0000 0.0822 beta 0.1000
rho_vphi 0.700 0.7000 10.0000 0.0700 beta 0.1000
rho_g 0.980 0.9800 10.0000 0.0980 beta 0.1000
standard deviation of shocks
prior mean mode s.d. t-stat prior pstdev
e_kappa 0.250 0.2500 10.0000 0.0250 invg Inf
e_z 0.250 0.2500 10.0000 0.0250 invg Inf
e_a 0.250 0.2500 10.0000 0.0250 invg Inf
e_s 0.250 0.2500 10.0000 0.0250 invg Inf
e_vphi 0.250 0.2500 10.0000 0.0250 invg Inf
e_g 0.250 0.2500 10.0000 0.0250 invg Inf
Log data density [Laplace approximation] is -16917479858756.599609.
Warning: File 'usvs1/metropolis' not found.
> In CheckPath at 41
In metropolis_hastings_initialization at 62
In random_walk_metropolis_hastings at 69
In dynare_estimation_1 at 931
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Multiple chains mode.
MH: Searching for initial values...
MH: I couldn't get a valid initial value in 100 trials.
MH: You should Reduce mh_init_scale...
MH: Parameter mh_init_scale is equal to 0.400000.
MH: Enter a new value... 0.01
MH: I couldn't get a valid initial value in 100 trials.
MH: You should Reduce mh_init_scale...
MH: Parameter mh_init_scale is equal to 0.010000.
MH: Enter a new value... 0.009
MH: Initial values found!
MH: Number of mh files : 1 per block.
MH: Total number of generated files : 3.
MH: Total number of iterations : 1000.
MH: average acceptation rate per chain :
0 0 0
MH: Total number of Mh draws: 1000.
MH: Total number of generated Mh files: 1.
MH: I'll use mh-files 1 to 1.
MH: In mh-file number 1 i'll start at line 500.
MH: Finally I keep 500 draws.
MH: I'm computing the posterior mean and covariance... Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.048776e-20.
> In compute_mh_covariance_matrix at 74
In marginal_density at 50
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.048776e-20.
> In marginal_density at 56
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
Done!
MH: I'm computing the posterior log marginale density (modified harmonic mean)...
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.048776e-20.
> In marginal_density at 67
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: The support of the weighting density function is not large enough...
MH: I increase the variance of this distribution.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 1.766881e-18.
> In marginal_density at 102
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 1.628578e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.020776e-19.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 3.854419e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 1.434634e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 3.001022e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 1.185226e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 2.664325e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 1.092922e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 2.740423e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 1.211734e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 8.509851e-19.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 5.124496e-19.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 1.230393e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 4.619124e-19.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 2.226457e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 9.653391e-19.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: There's probably a problem with the modified harmonic mean estimator.
ESTIMATION RESULTS
Log data density is -Inf.
parameters
prior mean post. mean conf. interval prior pstdev
eta 2.450 2.5128 2.4941 2.5234 norm 0.7500
sigma_c 1.620 1.5726 1.5293 1.6490 norm 0.3750
h 0.690 0.7136 0.6796 0.7588 beta 0.1000
omicron 5.860 5.8657 5.8194 5.8977 norm 2.0000
omega 3.230 3.1770 3.1271 3.2162 norm 0.1000
rho_rn 0.880 0.8338 0.8009 0.8599 norm 0.1000
phi_pi 1.480 1.3702 1.2954 1.4627 norm 0.1000
phi_y 0.080 0.0732 0.0564 0.0975 norm 0.0500
tau 0.660 0.7306 0.6805 0.8035 beta 0.1000
xi 0.870 0.8748 0.8302 0.9003 beta 0.1000
rho_kappa 0.490 0.4879 0.4520 0.5515 beta 0.1000
rho_z 0.750 0.8181 0.7703 0.8459 beta 0.1000
rho_s 0.866 0.8520 0.8303 0.8792 beta 0.1000
rho_a 0.822 0.8696 0.8229 0.9085 beta 0.1000
rho_vphi 0.700 0.6995 0.5958 0.7931 beta 0.1000
rho_g 0.980 0.9080 0.7955 0.9659 beta 0.1000
standard deviation of shocks
prior mean post. mean conf. interval prior pstdev
e_kappa 0.250 0.2046 0.1689 0.2707 invg Inf
e_z 0.250 0.2836 0.1910 0.3328 invg Inf
e_a 0.250 0.3017 0.2543 0.3651 invg Inf
e_s 0.250 0.4057 0.3421 0.4611 invg Inf
e_vphi 0.250 0.2365 0.1649 0.3108 invg Inf
e_g 0.250 0.3230 0.2239 0.4111 invg Inf
Warning: BETAINV did not converge for a = 0.9408, b = 0.0192, p = 0.999.
> In betainv at 61
In draw_prior_density at 47
In PlotPosteriorDistributions at 80
In dynare_estimation_1 at 951
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
Total computing time : 0h00m52s
eta, 2.45, normal_pdf, 2, 0.75;
Configuring Dynare ...
[mex] Generalized QZ.
[mex] Sylvester equation solution.
[mex] Kronecker products.
[mex] Sparse kronecker products.
[mex] Local state space iteration (second order).
[mex] Bytecode evaluation.
[mex] k-order perturbation solver.
[mex] k-order solution simulation.
[mex] Quasi Monte-Carlo sequence (Sobol).
[mex] Markov Switching SBVAR.
Starting Dynare (version 4.3.3).
Starting preprocessing of the model file ...
Substitution of endo lags >= 2: added 3 auxiliary variables and equations.
Found 20 equation(s).
Evaluating expressions...done
Computing static model derivatives:
- order 1
Computing dynamic model derivatives:
- order 1
- order 2
Processing outputs ...done
Preprocessing completed.
Starting MATLAB/Octave computing.
You did not declare endogenous variables after the estimation/calib_smoother command.
Prior distribution for parameter rho_g has two modes!
Warning: File 'usvs1/prior' not found.
> In CheckPath at 41
In set_prior at 264
In dynare_estimation_init at 123
In dynare_estimation_1 at 59
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
Loading 67 observations from simdata.m
Initial value of the log posterior (or likelihood): -16066322706048.12
-----------------
-----------------
f at the beginning of new iteration, 16066322706048.1230468750
Predicted improvement: 613049708085010484953088.000000000
lambda = 1; f = 887739114016133888.0000000
lambda = 0.33333; f = 98651958521113696.0000000
lambda = 0.11111; f = 10975609237057046.0000000
lambda = 0.037037; f = 1233793092106692.0000000
lambda = 0.012346; f = 151369223390114.9062500
lambda = 0.0041152; f = 31099953773500.9921875
lambda = 0.0013717; f = 17736717970434.7265625
lambda = 0.00045725; f = 16251919451168.7500000
lambda = 0.00015242; f = 16086943657534.4746094
lambda = 5.0805e-05; f = 16068613620336.5000000
lambda = 1.6935e-05; f = 16066577151716.4472656
lambda = 5.645e-06; f = 16066350944818.5703125
lambda = 1.8817e-06; f = 16066325833183.2207031
lambda = 6.2723e-07; f = 16066323050489.6523438
lambda = 2.0908e-07; f = 16066322743718.1386719
lambda = 6.9692e-08; f = 16066322710082.0253906
lambda = 2.3231e-08; f = 16066322706451.1367188
lambda = 7.7435e-09; f = 16066322706081.0820312
lambda = 2.5812e-09; f = 16066322706049.3125000
lambda =
-6.2723e-07
lambda = -6.2723e-07; f = 16066370588169.4121094
lambda = -2.0908e-07; f = 16066328025234.1621094
lambda = -6.9692e-08; f = 16066323296720.5039062
lambda = -2.3231e-08; f = 16066322771563.8730469
lambda = -7.7435e-09; f = 16066322713291.0605469
lambda = -2.5812e-09; f = 16066322706841.7070312
Norm of dx 1.1073e+10
----
Improvement on iteration 1 = 0.000000000
improvement < crit termination
smallest step still improving too slow, reversed gradient
Objective function at mode: 16066322706048.123047
MODE CHECK
Fval obtained by the minimization routine: 16066322706048.123047
RESULTS FROM POSTERIOR MAXIMIZATION
parameters
prior mean mode s.d. t-stat prior pstdev
eta 2.450 2.0000 10.0000 0.2000 norm 0.7500
sigma_c 1.620 1.0000 10.0000 0.1000 norm 0.3750
h 0.690 0.7000 10.0000 0.0700 beta 0.1000
omicron 5.860 4.0000 10.0000 0.4000 norm 2.0000
omega 3.230 5.0000 10.0000 0.5000 norm 0.1000
rho_rn 0.880 0.7500 10.0000 0.0750 norm 0.1000
phi_pi 1.480 1.5000 10.0000 0.1500 norm 0.1000
phi_y 0.080 0.1250 10.0000 0.0125 norm 0.0500
tau 0.660 0.7700 10.0000 0.0770 beta 0.1000
xi 0.870 0.7500 10.0000 0.0750 beta 0.1000
rho_kappa 0.490 0.8500 10.0000 0.0850 beta 0.1000
rho_z 0.750 0.8500 10.0000 0.0850 beta 0.1000
rho_s 0.866 0.8500 10.0000 0.0850 beta 0.1000
rho_a 0.822 0.8500 10.0000 0.0850 beta 0.1000
rho_vphi 0.700 0.8500 10.0000 0.0850 beta 0.1000
rho_g 0.980 0.8500 10.0000 0.0850 beta 0.1000
standard deviation of shocks
prior mean mode s.d. t-stat prior pstdev
e_kappa 0.250 0.2500 10.0000 0.0250 invg Inf
e_z 0.250 0.2500 10.0000 0.0250 invg Inf
e_a 0.250 0.2500 10.0000 0.0250 invg Inf
e_s 0.250 0.2500 10.0000 0.0250 invg Inf
e_vphi 0.250 0.2500 10.0000 0.0250 invg Inf
e_g 0.250 0.2500 10.0000 0.0250 invg Inf
Log data density [Laplace approximation] is -16066322705977.250000.
Warning: File 'usvs1/metropolis' not found.
> In CheckPath at 41
In metropolis_hastings_initialization at 62
In random_walk_metropolis_hastings at 69
In dynare_estimation_1 at 931
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Multiple chains mode.
MH: Searching for initial values...
MH: I couldn't get a valid initial value in 100 trials.
MH: You should Reduce mh_init_scale...
MH: Parameter mh_init_scale is equal to 0.400000.
MH: Enter a new value... 0.01
MH: Initial values found!
MH: Number of mh files : 1 per block.
MH: Total number of generated files : 3.
MH: Total number of iterations : 1000.
MH: average acceptation rate per chain :
0 0 0
MH: Total number of Mh draws: 1000.
MH: Total number of generated Mh files: 1.
MH: I'll use mh-files 1 to 1.
MH: In mh-file number 1 i'll start at line 500.
MH: Finally I keep 500 draws.
MH: I'm computing the posterior mean and covariance... Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.163005e-18.
> In compute_mh_covariance_matrix at 74
In marginal_density at 50
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.163005e-18.
> In marginal_density at 56
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
Done!
MH: I'm computing the posterior log marginale density (modified harmonic mean)...
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.163005e-18.
> In marginal_density at 67
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: The support of the weighting density function is not large enough...
MH: I increase the variance of this distribution.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.586269e-18.
> In marginal_density at 102
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.592658e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.168076e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.786268e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.834621e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.125031e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.781055e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.221069e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.115450e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.977791e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.016878e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.455596e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.778913e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.844161e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.910434e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.745399e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.237027e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: There's probably a problem with the modified harmonic mean estimator.
ESTIMATION RESULTS
Log data density is -Inf.
parameters
prior mean post. mean conf. interval prior pstdev
eta 2.450 2.0414 1.9497 2.1627 norm 0.7500
sigma_c 1.620 1.0338 0.9648 1.0706 norm 0.3750
h 0.690 0.7590 0.7120 0.8417 beta 0.1000
omicron 5.860 3.9508 3.8862 3.9914 norm 2.0000
omega 3.230 5.0411 5.0301 5.0482 norm 0.1000
rho_rn 0.880 0.8121 0.7024 0.8801 norm 0.1000
phi_pi 1.480 1.5601 1.4707 1.7117 norm 0.1000
phi_y 0.080 0.1868 0.1349 0.2436 norm 0.0500
tau 0.660 0.7389 0.6294 0.8507 beta 0.1000
xi 0.870 0.8081 0.7207 0.8520 beta 0.1000
rho_kappa 0.490 0.7700 0.7154 0.8380 beta 0.1000
rho_z 0.750 0.8773 0.7800 0.9973 beta 0.1000
rho_s 0.866 0.8493 0.6923 0.9485 beta 0.1000
rho_a 0.822 0.7998 0.7452 0.8788 beta 0.1000
rho_vphi 0.700 0.8193 0.7023 0.8815 beta 0.1000
rho_g 0.980 0.8206 0.7586 0.9122 beta 0.1000
standard deviation of shocks
prior mean post. mean conf. interval prior pstdev
e_kappa 0.250 0.2957 0.1881 0.3978 invg Inf
e_z 0.250 0.1991 0.1272 0.2554 invg Inf
e_a 0.250 0.3307 0.0653 0.4636 invg Inf
e_s 0.250 0.1772 0.1680 0.1884 invg Inf
e_vphi 0.250 0.2952 0.2244 0.4014 invg Inf
e_g 0.250 0.2269 0.1038 0.3184 invg Inf
Warning: BETAINV did not converge for a = 0.9408, b = 0.0192, p = 0.999.
> In betainv at 61
In draw_prior_density at 47
In PlotPosteriorDistributions at 80
In dynare_estimation_1 at 951
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
Total computing time : 0h00m50s
Configuring Dynare ...
[mex] Generalized QZ.
[mex] Sylvester equation solution.
[mex] Kronecker products.
[mex] Sparse kronecker products.
[mex] Local state space iteration (second order).
[mex] Bytecode evaluation.
[mex] k-order perturbation solver.
[mex] k-order solution simulation.
[mex] Quasi Monte-Carlo sequence (Sobol).
[mex] Markov Switching SBVAR.
Starting Dynare (version 4.3.3).
Starting preprocessing of the model file ...
Substitution of endo lags >= 2: added 3 auxiliary variables and equations.
Found 20 equation(s).
Evaluating expressions...done
Computing static model derivatives:
- order 1
Computing dynamic model derivatives:
- order 1
- order 2
Processing outputs ...done
Preprocessing completed.
Starting MATLAB/Octave computing.
You did not declare endogenous variables after the estimation/calib_smoother command.
Prior distribution for parameter rho_g has two modes!
Warning: File 'usvs1/prior' not found.
> In CheckPath at 41
In set_prior at 264
In dynare_estimation_init at 123
In dynare_estimation_1 at 59
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
Loading 67 observations from simdata.m
Initial value of the log posterior (or likelihood): -16066322706048.12
-----------------
-----------------
f at the beginning of new iteration, 16066322706048.1230468750
Predicted improvement: 613049708085010484953088.000000000
lambda = 1; f = 887739114016133888.0000000
lambda = 0.33333; f = 98651958521113696.0000000
lambda = 0.11111; f = 10975609237057046.0000000
lambda = 0.037037; f = 1233793092106692.0000000
lambda = 0.012346; f = 151369223390114.9062500
lambda = 0.0041152; f = 31099953773500.9921875
lambda = 0.0013717; f = 17736717970434.7265625
lambda = 0.00045725; f = 16251919451168.7500000
lambda = 0.00015242; f = 16086943657534.4746094
lambda = 5.0805e-05; f = 16068613620336.5000000
lambda = 1.6935e-05; f = 16066577151716.4472656
lambda = 5.645e-06; f = 16066350944818.5703125
lambda = 1.8817e-06; f = 16066325833183.2207031
lambda = 6.2723e-07; f = 16066323050489.6523438
lambda = 2.0908e-07; f = 16066322743718.1386719
lambda = 6.9692e-08; f = 16066322710082.0253906
lambda = 2.3231e-08; f = 16066322706451.1367188
lambda = 7.7435e-09; f = 16066322706081.0820312
lambda = 2.5812e-09; f = 16066322706049.3125000
lambda =
-6.2723e-07
lambda = -6.2723e-07; f = 16066370588169.4121094
lambda = -2.0908e-07; f = 16066328025234.1621094
lambda = -6.9692e-08; f = 16066323296720.5039062
lambda = -2.3231e-08; f = 16066322771563.8730469
lambda = -7.7435e-09; f = 16066322713291.0605469
lambda = -2.5812e-09; f = 16066322706841.7070312
Norm of dx 1.1073e+10
----
Improvement on iteration 1 = 0.000000000
improvement < crit termination
smallest step still improving too slow, reversed gradient
Objective function at mode: 16066322706048.123047
MODE CHECK
Fval obtained by the minimization routine: 16066322706048.123047
RESULTS FROM POSTERIOR MAXIMIZATION
parameters
prior mean mode s.d. t-stat prior pstdev
eta 2.450 2.0000 10.0000 0.2000 norm 0.7500
sigma_c 1.620 1.0000 10.0000 0.1000 norm 0.3750
h 0.690 0.7000 10.0000 0.0700 beta 0.1000
omicron 5.860 4.0000 10.0000 0.4000 norm 2.0000
omega 3.230 5.0000 10.0000 0.5000 norm 0.1000
rho_rn 0.880 0.7500 10.0000 0.0750 norm 0.1000
phi_pi 1.480 1.5000 10.0000 0.1500 norm 0.1000
phi_y 0.080 0.1250 10.0000 0.0125 norm 0.0500
tau 0.660 0.7700 10.0000 0.0770 beta 0.1000
xi 0.870 0.7500 10.0000 0.0750 beta 0.1000
rho_kappa 0.490 0.8500 10.0000 0.0850 beta 0.1000
rho_z 0.750 0.8500 10.0000 0.0850 beta 0.1000
rho_s 0.866 0.8500 10.0000 0.0850 beta 0.1000
rho_a 0.822 0.8500 10.0000 0.0850 beta 0.1000
rho_vphi 0.700 0.8500 10.0000 0.0850 beta 0.1000
rho_g 0.980 0.8500 10.0000 0.0850 beta 0.1000
standard deviation of shocks
prior mean mode s.d. t-stat prior pstdev
e_kappa 0.250 0.2500 10.0000 0.0250 invg Inf
e_z 0.250 0.2500 10.0000 0.0250 invg Inf
e_a 0.250 0.2500 10.0000 0.0250 invg Inf
e_s 0.250 0.2500 10.0000 0.0250 invg Inf
e_vphi 0.250 0.2500 10.0000 0.0250 invg Inf
e_g 0.250 0.2500 10.0000 0.0250 invg Inf
Log data density [Laplace approximation] is -16066322705977.250000.
Warning: File 'usvs1/metropolis' not found.
> In CheckPath at 41
In metropolis_hastings_initialization at 62
In random_walk_metropolis_hastings at 69
In dynare_estimation_1 at 931
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Multiple chains mode.
MH: Searching for initial values...
MH: I couldn't get a valid initial value in 100 trials.
MH: You should Reduce mh_init_scale...
MH: Parameter mh_init_scale is equal to 0.400000.
MH: Enter a new value... 0.01
MH: Initial values found!
MH: Number of mh files : 1 per block.
MH: Total number of generated files : 3.
MH: Total number of iterations : 1000.
MH: average acceptation rate per chain :
0 0 0
MH: Total number of Mh draws: 1000.
MH: Total number of generated Mh files: 1.
MH: I'll use mh-files 1 to 1.
MH: In mh-file number 1 i'll start at line 500.
MH: Finally I keep 500 draws.
MH: I'm computing the posterior mean and covariance... Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.163005e-18.
> In compute_mh_covariance_matrix at 74
In marginal_density at 50
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.163005e-18.
> In marginal_density at 56
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
Done!
MH: I'm computing the posterior log marginale density (modified harmonic mean)...
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.163005e-18.
> In marginal_density at 67
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: The support of the weighting density function is not large enough...
MH: I increase the variance of this distribution.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.586269e-18.
> In marginal_density at 102
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.592658e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.168076e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.786268e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.834621e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.125031e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.781055e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.221069e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.115450e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.977791e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.016878e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.455596e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.778913e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.844161e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.910434e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 6.745399e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: Let me try again.
Warning: Matrix is close to singular or badly scaled. Results may be
inaccurate. RCOND = 7.237027e-18.
> In marginal_density at 108
In dynare_estimation_1 at 948
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
MH: There's probably a problem with the modified harmonic mean estimator.
ESTIMATION RESULTS
Log data density is -Inf.
parameters
prior mean post. mean conf. interval prior pstdev
eta 2.450 2.0414 1.9497 2.1627 norm 0.7500
sigma_c 1.620 1.0338 0.9648 1.0706 norm 0.3750
h 0.690 0.7590 0.7120 0.8417 beta 0.1000
omicron 5.860 3.9508 3.8862 3.9914 norm 2.0000
omega 3.230 5.0411 5.0301 5.0482 norm 0.1000
rho_rn 0.880 0.8121 0.7024 0.8801 norm 0.1000
phi_pi 1.480 1.5601 1.4707 1.7117 norm 0.1000
phi_y 0.080 0.1868 0.1349 0.2436 norm 0.0500
tau 0.660 0.7389 0.6294 0.8507 beta 0.1000
xi 0.870 0.8081 0.7207 0.8520 beta 0.1000
rho_kappa 0.490 0.7700 0.7154 0.8380 beta 0.1000
rho_z 0.750 0.8773 0.7800 0.9973 beta 0.1000
rho_s 0.866 0.8493 0.6923 0.9485 beta 0.1000
rho_a 0.822 0.7998 0.7452 0.8788 beta 0.1000
rho_vphi 0.700 0.8193 0.7023 0.8815 beta 0.1000
rho_g 0.980 0.8206 0.7586 0.9122 beta 0.1000
standard deviation of shocks
prior mean post. mean conf. interval prior pstdev
e_kappa 0.250 0.2957 0.1881 0.3978 invg Inf
e_z 0.250 0.1991 0.1272 0.2554 invg Inf
e_a 0.250 0.3307 0.0653 0.4636 invg Inf
e_s 0.250 0.1772 0.1680 0.1884 invg Inf
e_vphi 0.250 0.2952 0.2244 0.4014 invg Inf
e_g 0.250 0.2269 0.1038 0.3184 invg Inf
Warning: BETAINV did not converge for a = 0.9408, b = 0.0192, p = 0.999.
> In betainv at 61
In draw_prior_density at 47
In PlotPosteriorDistributions at 80
In dynare_estimation_1 at 951
In dynare_estimation at 70
In usvs1 at 322
In dynare at 120
Total computing time : 0h00m50s
Given that your observables are in the range of thousands, they are most probably inconsistent with the way you defined your model variables.
Users browsing this forum: Google [Bot] and 7 guests