Hi, my mdoel could not converge making acheiving steady state difficult the error it displays goes thus;
??? Error using ==> print_info at 57
Impossible to find the steady state. Either the model doesn't have a steady
state, there are an infinity of steady states, or the guess values are too
far from the solution
Error in ==> steady at 92
print_info(info,options_.noprint);
Error in ==> kk1 at 450
steady;
Error in ==> dynare at 120
evalin('base',fname) ;
Please can anyone tell me the easiest way of resolving this error?
thank you
my file is as follows:
var c, io, im, is, yo, ym, ys,ymd,ymex, yoex, yom, yos,y, ymva, pi, xm, ysd, xs, ysva, z, Oo, po, ko, km, ks, M, p,l, I, lo, lm, ls, b, k, Wo, Wm, Ws, wo, wm, ws, qo, qm, qs, Po, Ps, ps, PO, s, e, R, mcs;
varexo pof,O, Rf, yof,ymf, pi_f, pm;
parameters alpha_m, beta_m, theta_m, alpha_o, beta_o, theta_o, alpha_s, beta_s, sigma, theta_s, alpha_lo, omega_o, alpha_lm, alpha_ls, nu, gamma, rho, delta, psi, tau, mu_e, mu_pi, omega_m, phi_m, phi_o, eta_of, eta_mf, epsilon_of, epsilon_mf,eta_pof, eta_O, epsilon_pof, epsilon_O;
gamma = 3;
delta = 0.025;
alpha_o = 0.31;
beta_o = 0.24;
theta_o = 0.45;
alpha_m = 0.33;
rho = 0.99;
nu = 2;
beta_m = 0.57;
theta_m = 0.1;
alpha_s = 0.23;
beta_s = 0.52;
theta_s = 0.25;
phi_m = 6;
phi_o=4;
alpha_lm = 0.13;
alpha_lo = 0.36;
alpha_ls = 0.51;
psi = 0.75;
tau = 0.8;
omega_m = 8;
omega_o=9;
mu_pi = 1.101;
mu_e = 1.023;
eta_of=0.25;
eta_mf=0.02;
epsilon_of=0.25;
epsilon_mf=0.03;
eta_pof=0.25;
eta_O=0.02;
epsilon_pof=0.05;
epsilon_O=0.13;
sigma=0.01;
model;
c^(-nu)=c(+1)^(-nu)*(1+R);
(1+delta)*c^(-nu)=c(-1)^(-nu);
(M/p)^(gamma-1)=-c(+1)^(-nu)*R;
I=k*(+1)+(1-delta)*k;
l=lo^(alpha_lo)*lm^(alpha_lm)*ls^(alpha_ls);
ws(+1)=(1-psi)*(pi)+(psi)*pi(-1)*ws;
wo(+1)=(1-psi)*(pi)+(psi)*pi(-1)*wo;
wm(+1)=(1-psi)*(pi)+(psi)*pi(-1)*wm;
ps(+1)=(1-psi)*(pi)+(psi)*pi(-1)*ps;
pi=p-p(-1)/p;
yo=ko^(alpha_o)*lo^(beta_o)*O^(theta_o);
qo=(alpha_o)*s*pof*(yo/ko);
wo=(beta_o)*s*pof*(yo/lo);
PO=(theta_o)*s*pof*(yo/Oo);
po=(1-sigma)*(po(-1)/pi)+sigma*s*pof;
ys=ks^(alpha_s)*ls^(beta_s)*yos^(theta_s);
qs=(alpha_s)*mcs*(ys/ks);
ws=(beta_s)*mcs*(ys/ls);
po=(theta_s)*mcs*ys/yos^(theta_s);
ps=pi*ps(-1);
mcs=qs^alpha_s*ws^beta_s*po^theta_s/alpha_s^alpha_s*beta_s^beta_s*theta_s^theta_s;
ym=km^(alpha_m)*lm^(beta_m)*yom^(theta_m);
qm=(alpha_m)*s*pm*(ym/km);
wm=(beta_m)*s*pm*(ym/lm);
po=(theta_m)*s*pm*ym/yom^(theta_m);
s*pm= qm^alpha_m*wm^beta_m*po^theta_m/alpha_m^alpha_m*beta_m^beta_m*theta_m^theta_m;
ymd=xm*(pm/p)^(-tau)*z;
ysd=xs*(ps/p)^(-tau)*z;
z=c+io+im+is;
wm=Wm/p;
ws=Ws/p;
wo=Wo/p;
PO=po/p;
ym=ymd+ymex;
yo=yom+yos+yoex;
z=xs^(1/tau-1)*ysd^(tau-1)/tau+xm^(1/tau-1)*ymd^(tau-1)/tau;
xm+xs=1;
exp(R)=(mu_pi)*exp(pi)+(mu_e)*exp(e);
b=b(-1);
ymex=phi_m*(e*pm/p)^(-omega_m)*ymf;
yoex=phi_o*(e*po/p)^(-omega_o)*yof;
y=pm*ymva+ps*ysva+s*pof*yo ;
alpha_o+beta_o+theta_o=1;
alpha_m+beta_m+theta_m=1;
alpha_s+beta_s+theta_s=1;
ymva=ym-s*pof*(yom/pm);
ysva=ys-s*pof*(yos/ps);
exp(yof)=(1-eta_of)*exp(yof)+eta_of*exp(yof(-1))+epsilon_of;
exp(ymf)=(1-eta_mf)*exp(ymf)+eta_mf*exp(ymf(-1))+epsilon_mf;
exp(pof)=(1-eta_pof)*exp(pof)+eta_pof*exp(pof(-1))+epsilon_pof;
exp(O)=(1-eta_O)*exp(O)+eta_O*exp(O(-1))+epsilon_O;
end;
initval;
c=0.8;
io=2;
im=1;
is=1;
yo=2.3;
ym=1.2;
ys=1.0;
ymd=0;
ymex=0;
yom=0;
yoex=0;
yos=0;
y=1.089735624;
ymva=0;
ysva=0;
z=0;
ko=3;
km=2;
ks=2;
l=2;
lo=1;
lm=0;
ls=1;
b=0;
k=6;
Wo=2;
Wm=0;
Ws=0;
wo=0;
wm=0;
ws=0;
qo=1;
qm=0;
qs=1;
po=0;
ps=0;
PO=2;
pi=0;
s=0;
e=0;
R=0;
mcs=0;
end;
shocks;
var pof; stderr 0.1975;
var O; stderr 0.2089;
var Rf; stderr 0.1693;
var yof; stderr 0.0104;
var pi_f; stderr 0.1999;
end;
steady;
stoch_simul(periods=40);