[code]var y,cp,i,k,n,d,rd,p,w,ce,rb,b,l,rl,a,v,r,xn,f,ib;
varexo ea,eu;
parameters betap,shp,psi,betae,she,alpha,sigma,cd,cl,cb,oy,op,or,rhoa,rhov,ps,rds,rls,rbs,rs,ws,ys,ls,ds,bs,ks,ns,cps,ces,is,fs,ibs,xns;
betap=0.9985;
shp=1;
psi=1;
betae=0.9925;
she=1;
alpha=0.5;
sigma=0.03;
cd=0.01;
cl=0.01;
cb=0.01;
or=0.5;
op=1.5;
oy=0.125;
rhoa=0.95;
rhov=0.95;
sa=0.05;
su=0.05;
ps=1.0245;
rds=ps/betap;
rls=ps/betae;
rbs=ps/betae;
rs=(0.9*cl*cb*rds+cd*cb*rls+cd*cl*rbs)/(cl*cb*0.9+cd*cl+cd*cb);
ws=(0.5*(betae/(1-betae*(1-sigma)))^0.5)^2;
ys=((2*ws^2)/(0.5-(1-rbs/ps)*(rbs-rs)*100-(1-rls/ps)*(rls-rs)*100))^0.5;
ls=(rls-rs)*100*ys;
bs=(rbs-rs)*100*ys;
ds=0.1*(rs-rds)*100*ys;
ks=(alpha*betae/(1-(1-sigma)*betae))*ys;
ns=0.5*ys/ws;
cps=(ws^2)/(ys*0.5);
is=ks*sigma;
ces=0.5*ys+(1-rbs/ps)*(rbs-rs)*100*ys+(1-rls/ps)*(rls-rs)*100*ys-is;
fs=(rls-rs)*ls+(rbs-rs)*bs+10*(rs-rds)*ds;
ibs=0;
xns=0.1;
model;
1=exp(rd)*betap*((exp(cp(+1)-cp))^(-shp))*(1/exp(p(+1)))*(exp(v-v(-1)));
exp(w)=((exp(cp))^shp)*(exp(n))^psi;
exp(cp)+exp(d)=exp(rd(-1)+d(-1)-p)+exp(w+n)+exp(f)+0.0044778844741975;//h
y=a+k(-1)*alpha+(1-alpha)*n;
exp(k)=(1-sigma)*exp(k(-1))+exp(i);
1=exp(rb)*betae*((exp(ce(+1)-ce))^(-she))*(1/exp(p(+1)))*(exp(v(+1)-v));
1=exp(rl)*betae*((exp(ce(+1)-ce))^(-she))*(1/exp(p(+1)))*(exp(v(+1)-v));
exp(w)=(1-alpha)*(exp(y-n));
1=betae*((exp(ce(+1)-ce))^(-she))*(exp(v(+1)-v))*((alpha*exp(y-k(-1)))+1-sigma);
exp(ce)+exp(w+n)+exp(i)+exp(rb(-1)+b(-1)-p)+exp(rl(-1)+l(-1)-p)=exp(y)+exp(b)+exp(l);
exp(p)-ps=betap*(exp(p(+1))-ps);//e
exp(rl)=exp(r)+(cl/exp(y))*exp(l);
exp(rb)=exp(r)+(cb/exp(y))*exp(b);
exp(rd)=exp(r)-exp(xn)*(cd/exp(y))*exp(d)/((exp(xn))^2);
exp(f)=(exp(rl)-exp(r))*exp(l)+(exp(rb)-exp(r))*exp(b)+((1/exp(xn))*(exp(r)-exp(rd)))*exp(d)-(1/(2*exp(y)))*(cd*((exp(d-xn))^2-(ds/xns)^2)+cl*((exp(l))^2-ls^2)+cb*((exp(b))^2-bs^2));
r=or*r(-1)+(1-or)*(log(rs)+op*(p(+1)-log(ps))+oy*(y-log(ys)));
ib+exp(d-xn)=exp(l)+exp(b)+exp(d);
a=rhoa*a(-1)+ea;
v=rhov*v(-1)+eu;
exp(y)=exp(cp)+exp(ce)+exp(i);
end;
initval;
ea=0;
eu=0;
a=0;
v=0;
y=log(ys);
cp=log(cps);
i=log(is);
k=log(ks);
n=log(ns);
d=log(ds);
rd=log(rds);
p=log(ps);
w=log(ws);
ce=log(ces);
rb=log(rbs);
b=log(bs);
rl=log(rls);
l=log(ls);
r=log(rs);
f=log(fs);
ib=ibs;
xn=log(0.1);
end;
resid(4);
check;
shocks;
var ea; stderr sa;
var eu; stderr su;
end;
stoch_simul y,i,k;/code]
Residuals of the static equations:
Equation number 1 : 0
Equation number 2 : 0
Equation number 3 : -0.0008406
Equation number 4 : 0
Equation number 5 : 0
Equation number 6 : 0
Equation number 7 : 0
Equation number 8 : 0
Equation number 9 : 0
Equation number 10 : 0
Equation number 11 : 0
Equation number 12 : 0
Equation number 13 : 0
Equation number 14 : 0
Equation number 15 : 0
Equation number 16 : 0
Equation number 17 : 0
Equation number 18 : 0
Equation number 19 : 0
Equation number 20 : 0
EIGENVALUES:
Modulus Real Imaginary
9.277e-19 -9.277e-19 0
3.679e-17 -3.679e-17 0
3.041e-15 -3.041e-15 0
1.169e-13 1.169e-13 0
0.7862 0.7862 0
0.8167 -0.8167 0
0.95 0.95 0
0.95 0.95 0
0.9944 0.9944 0
1.002 1.002 0
1.002 1.002 0
1.008 1.008 0
Inf Inf 0
Inf Inf 0
There are 5 eigenvalue(s) larger than 1 in modulus
for 4 forward-looking variable(s)
The rank conditions ISN'T verified!
Error using print_info (line 39)
Blanchard Kahn conditions are not satisfied: no stable equilibrium
How to solve this ? i am a newer.