Hi,
I have a simple NK model with asset returns. Here is the code. I am not sure how to read the IRF output from Dynare.
For example, in the IRF graph, one standard deviation monetary policy shock(-15 bps quarterly) corresponding to 0.002 increase in log returns. Is this 20 bps changes in return? How to convert to annually? So, 15 bps quarterly ==> 60bps annually for monetary policy shock and 0.002*4 = 0.008 or 80 bps increase in asset return?
Thanks.
Max
------------------------------------------------
var x y y_n div m re_div p_d pi i a;
varexo
//structural shocks
eps_a
eps_i
;
parameters
beta sigma phi
theta delta epsilon mu kappa
i_pi i_x sigma_i rho_i i_bar
rho_a mu_a a_bar sigma_a;
beta =0.98;
sigma =1; // risk aversion
phi =0.35; // Utility parameter on Labor N(t) -- Inverse of Frisch labor elasticity
a_bar = 0.0047; // long run growth rate of productivity 0.0047
mu_a =a_bar*(1-rho_a);
rho_a = 0.8; // persistency of log TFP
delta = 1; // leverage ratio
epsilon = 6; // goods aggregation parameter
mu = log(epsilon/(epsilon-1));
theta =0.65; //price dispersion
kappa =(1 - theta )*(1 - theta * beta )*( sigma + phi )/ theta;
i_pi = 1.5; //1.5
i_x = 0.125;
rho_i = 0.63; //interest rates smoothing
i_bar = - log(beta); // constant in the policy rule - make DIS equation stationary & x_ss = 0
sigma_a = 0.1; //0.202 Gourio(2012)
sigma_i = 0.183/(i_x*(1-rho_i)); //0.151
model;
x = x(+1) - 1/ sigma *(i - pi(+1) + log(beta) + sigma*(1-rho_a)*(1+phi)*(a - a_bar)/(sigma+phi) ); //DIS
pi = kappa * x + beta * pi(+1); //NKPC
i = rho_i*i(-1) + (1-rho_i)*(i_bar + i_pi*(pi) + i_x* x - i_x*(sigma_i/100)*eps_i ); //Taylor
a = (1-rho_a)*a_bar + rho_a*a(-1) + (sigma_a/100)*eps_a; //State Equation - Permanent log(TFP)
//////update here
// Asset Pricing
y_n = a*(1+phi)/(sigma+phi) - mu/(sigma+phi); // log nature output level
y = x + y_n; // log output level
div = (1+phi)*a - (sigma+phi)*y; // firm real profit, or dividend
exp(m) = beta*exp(-sigma*(y-y(-1))); // log pricing kernal
exp(re_div) = (1 + exp(p_d))*exp(delta*div)/(exp(p_d(-1) + delta*div(-1)));
1 = exp(m(+1)+re_div(+1));
end ;
initval;
x = 0;
pi = 0;
y_n = a_bar*(1+phi)/(sigma+phi)- mu/(sigma+phi);
y = a_bar*(1+phi)/(sigma+phi)- mu/(sigma+phi);
div = mu;
m = log(beta); //log(beta)-sigma*a_bar
re_div = - log(beta);
p_d = log(beta/(1-beta)); //
i = i_bar;
a = a_bar;
end;
resid(1);
steady;
check;
shocks;
var eps_a = 1;
var eps_i = 1;
end;
stoch_simul(irf=40) re_div p_d div m x y y_n pi i;
----------------------------------------------------------------------------