Steady state & residuals + colinear relationships

This forum is closed. You can read the posts but cannot write. We have migrated the forum to a new location where you will have to reset your password.
Forum rules
This forum is closed. You can read the posts but cannot write. We have migrated the forum to a new location (https://forum.dynare.org) where you will have to reset your password.

Steady state & residuals + colinear relationships

Postby dmbn » Mon Oct 12, 2015 9:24 pm

Hi!

I'm trying to implement the model from "TECHNOLOGY INNOVATION AND DIFFUSION AS SOURCES OF OUTPUT AND
ASSET PRICE FLUCTUATIONS" by Comin, Gertler and Santacreu. In the steady state I get non-zero residuals in 2 equations. I know what it means. Obviously, there is a mistake in my steady-state, but I can't find it. Remark: some parameters are chosen in an another way than in the paper. I ask you to look at the mod-file and I would be very thankful if you could tell, whether there is and where is the mistake. Thanks in advance!!!
Attachments
cgs.mod
(6.5 KiB) Downloaded 138 times
w15029.pdf
(538.9 KiB) Downloaded 188 times
Last edited by dmbn on Sun Oct 18, 2015 2:58 pm, edited 1 time in total.
dmbn
 
Posts: 17
Joined: Mon Jun 02, 2014 7:46 pm

Re: Steady state & residuals

Postby jpfeifer » Wed Oct 14, 2015 6:20 pm

Are you sure the shock processes are correct?

Code: Select all
% stochastic processes
log(chi) = rho*log(chi(-1)) + eps; %31
log(x) = eta*log(x(-1)) + sigma; %32
log(g) = nu*log(g(-1)) + varrho; %33
log(p_k_st) = rho_st*log(p_k_st(-1)) + eps_st; %34

means they will all have steady state 0. That is not what you use for x and g.
------------
Johannes Pfeifer
University of Cologne
https://sites.google.com/site/pfeiferecon/
jpfeifer
 
Posts: 6940
Joined: Sun Feb 21, 2010 4:02 pm
Location: Cologne, Germany

Re: Steady state & residuals

Postby dmbn » Thu Oct 15, 2015 7:12 pm

Thanks a lot! Setting the four parameters to 1, or, equivalently, using
Code: Select all
% stochastic processes
log(chi) = log(chi(-1)) + eps; %31
log(x) = log(x(-1)) + sigma; %32
log(g) = log(g(-1)) + varrho; %33
log(p_k_st) = log(p_k_st(-1)) + eps_st; %34


makes all the residuals = 0.
dmbn
 
Posts: 17
Joined: Mon Jun 02, 2014 7:46 pm

Re: Steady state & residuals + colinear relationships

Postby dmbn » Sun Oct 18, 2015 3:06 pm

I finally could derive the steady state equations to get all the residuals = 0. I'm getting 8 eigenvalues greater than one for 12 jump variables. So I use the
Code: Select all
model_diagnostics
command. And I get the following output:

Code: Select all
model_diagnostic: the Jacobian of the static model is singular
there is 7 colinear relationships between the variables and the equations
Relation 1
Colinear variables:
y       
c       
g       
p_k     
j       
i       
z_k     
z_y     
v_k     
v_y     
n_y     
a_k     
a_y     
h_k     
h_y     
x       
k       
l       
o_k     
o_y     
pi_k   
pi_y   
p_k_et 
n_k     
j_y     
j_k     
i_s     
i_e     
lambda_y
lambda_k
p_k_bar
Relation 2
Colinear variables:
c       
g       
p_k     
j       
z_k     
z_y     
v_k     
v_y     
n_y     
a_k     
a_y     
h_k     
h_y     
x       
k       
l       
o_k     
o_y     
pi_k   
pi_y   
p_k_st 
p_k_et 
n_k     
j_y     
j_k     
lambda_y
lambda_k
p_k_bar
Relation 3
Colinear variables:
c       
g       
p_k     
j       
z_k     
z_y     
v_k     
v_y     
n_y     
a_k     
a_y     
h_k     
h_y     
x       
k       
l       
o_k     
o_y     
pi_k   
pi_y   
p_k_st 
p_k_et 
n_k     
j_y     
j_k     
lambda_y
lambda_k
p_k_bar
Relation 4
Colinear variables:
c       
g       
p_k     
j       
z_k     
z_y     
v_k     
v_y     
n_y     
a_k     
a_y     
h_k     
h_y     
x       
k       
l       
o_k     
o_y     
pi_k   
pi_y   
p_k_st 
p_k_et 
n_k     
j_y     
j_k     
lambda_y
lambda_k
p_k_bar
Relation 5
Colinear variables:
c       
g       
p_k     
j       
z_k     
z_y     
v_k     
v_y     
n_y     
a_k     
a_y     
h_k     
h_y     
x       
k       
l       
o_k     
o_y     
pi_k   
pi_y   
p_k_st 
p_k_et 
n_k     
j_y     
j_k     
lambda_y
lambda_k
p_k_bar
Relation 6
Colinear variables:
c       
g       
p_k     
j       
z_k     
z_y     
v_k     
v_y     
n_y     
a_k     
a_y     
h_k     
h_y     
x       
k       
l       
o_k     
o_y     
pi_k   
pi_y   
p_k_st 
p_k_et 
n_k     
j_y     
j_k     
lambda_y
lambda_k
p_k_bar
Relation 7
Colinear variables:
c       
g       
p_k     
j       
z_k     
z_y     
v_k     
v_y     
n_y     
a_k     
a_y     
h_k     
h_y     
x       
k       
l       
o_k     
o_y     
pi_k   
pi_y   
p_k_st 
p_k_et 
n_k     
j_y     
j_k     
lambda_y
lambda_k
p_k_bar
Relation 1
Colinear equations
     6     7     9    10    12    13    14
Relation 2
Colinear equations
     6     7     9    10    12    13    14
Relation 3
Colinear equations
    31
Relation 4
Colinear equations
    32
Relation 5
Colinear equations
    33
Relation 6
Colinear equations
    34
Relation 7
Colinear equations
     6     7     9    10    12    13    14
The presence of a singularity problem typically indicates that there is one
redundant equation entered in the model block, while another non-redundant equation
is missing. The problem often derives from Walras Law.


What does this colinearity mean? How could it be, that only one equation at a time (No. 31 - 34, stochastic processes) is colinear? Is the eigenvalues problem arising from the steady state or does it depend on the starting values for k, lambdas and other? Varying this I get from 5 to 8 eigenvalues > 1, bot not more.
Attachments
cgs.mod
(6.53 KiB) Downloaded 127 times
dmbn
 
Posts: 17
Joined: Mon Jun 02, 2014 7:46 pm

Re: Steady state & residuals + colinear relationships

Postby jpfeifer » Tue Oct 20, 2015 1:45 pm

Your exogenous processes specify unit roots. That's why there is collinearity in these equations. Given the many missing explosive eigenvalues, I would think that you are having a systematic timing issue in your model.
------------
Johannes Pfeifer
University of Cologne
https://sites.google.com/site/pfeiferecon/
jpfeifer
 
Posts: 6940
Joined: Sun Feb 21, 2010 4:02 pm
Location: Cologne, Germany

Re: Steady state & residuals + colinear relationships

Postby dmbn » Fri Nov 06, 2015 10:37 am

I rewrote three of four exogenous processes, such that they are sorting with the paper now. But in the paper one process looks like
Code: Select all
log(X_t) = log(X_t-1) + sigma; %31

Can it be a problem?

Furthermore I get 3 colinear equations (number 6,7 and 30). In order to have the equation
Code: Select all
log(Chi_t) = rho*log(Chi_t-1) + eps; %30

fulfilled in the steady state I choose Chi = 1. But then the equations 6 and 7
Code: Select all
z_y(+1) = (chi_y_bar*(chi^ksi_y) + phi)*z_y; %6
z_k(+1) = (chi_k_bar*(chi^ksi_k) + phi)*z_k; %7

imply that in the steady state chi_k_bar + phi = 1 and chi_y_bar + phi = 1. But that contradicts the calibration of the model (chi_k_bar = 0.0304, chi_y_bar = 0.0202, phi = 0.99). What is the right way? Thanks in advance!
Attachments
cgs_main_steady.mod
(6.87 KiB) Downloaded 127 times
dmbn
 
Posts: 17
Joined: Mon Jun 02, 2014 7:46 pm

Re: Steady state & residuals + colinear relationships

Postby jpfeifer » Sun Nov 08, 2015 10:00 am

The first one will give you a unit root, which is a feature of the model as far as I can see. But i

I cannot work myself into the calibration of the model. So you need to figure out how to make the steady states consistent.

But I would like to point out that the last two equations are not conforming to Dynare's timing convention. They are laws of motion that describe predetermined variables.
Code: Select all
z_y(+1) = (chi_y_bar*(chi^ksi_y) + phi)*z_y; %6

in Dynare means
Code: Select all
E_t(z_y(+1)) = (chi_y_bar*(chi^ksi_y) + phi)*z_y; %6

I guess that z_y(+1) must be predetermined here like capital.
------------
Johannes Pfeifer
University of Cologne
https://sites.google.com/site/pfeiferecon/
jpfeifer
 
Posts: 6940
Joined: Sun Feb 21, 2010 4:02 pm
Location: Cologne, Germany

Re: Steady state & residuals + colinear relationships

Postby dmbn » Fri Nov 13, 2015 1:26 pm

jpfeifer, thanks a lot!!!
dmbn
 
Posts: 17
Joined: Mon Jun 02, 2014 7:46 pm


Return to Dynare help

Who is online

Users browsing this forum: No registered users and 7 guests