- Code: Select all
%----------------------------------------------------------------
% Linearized model
%----------------------------------------------------------------
model(linear);
//First order condition (2.28), (2,29) and (2.30):
c(+1) = c - psi*barc*(lambda*c + mu* m + varphi*l);
m = chi*(R/(R-1))*c;
omega*(l/barl) = (w/barw) - (p_t/barp_t) - (c/barc);
//Linearized budget constraint of household, government and central bank:
(b_h/barp_t) + (b_f/barp_t) + (b_m/barp_t) - (d/barp_t) = (1+r) * ((b_h(-1)/barp_t) + (b_f(-1)/barp_t) + (b_m(-1)/barp_t) - (d(-1)/barp_t)) + y_t - c_t - g_t + barp_n*(y_t - c_t - g_t) + p_n*(bary_t - barc_t - barg_t);
//Non-traded goods market eq. and relationship with net foreign assets:
(f/barp_t) = (b_h/barp_t) + (b_f/barp_t) + (b_m/barp_t) - (d/barp_t);
(f/barp_t) = (1+r)*(f(-1)/barp_t) + y_t - c_t - g_t;
// In whole consumption terms:
(f/barp) = R*(f(-1)/barp) + y_t - c_t - g_t - (R-1)*(barf/barp)*(p/barp);
// Applying the parameters we obtain:
(f/barp) = (1+r)*(f(-1)/barp) + (gamma*barl*((bara_t/bara_n)^(gamma-1))* a_t) - c - r*(1-gamma)*(fbar/pbar)*(a_t/bara_t);
// Forward by one period, and with assumption of parameters we obtain:
(f(+1)/barp) - (1 - psi*barc)*(f/barp) = (1+r)*((f/barp) - (1 - psi*barc*(f(-1)/barp))) + gamma*barl*((bara_t/bara_n)^(gamma-1))*(a_t(+1) - (1 - psi*barc)*a_t) - (c(+1) - (1 - psi*barc)*c) - r*(1-gamma)*(barf/barp)*(1/bara_n)*(a_t(+1) - (1 - psi*barc)*a_t);
//Taking into consideration the FOC, the process for A_t and government expenditure exogenous:
((f/barp) - (1 - psi*barc)*(f(-1)/barp)) - ((f(+1)/barp) - (1 - psi*barc)*(f/barp)) = (1/(1+r))*(gamma*barl*((bara_t/bara_n)^(gamma-1)) - r*(1 - gamma)*(barf/barp)*(1/bara_t))*(1 - rho - psi*barc)*a_t;
Any help is welcome. Thank you. Fernando.