i write the dynare code as follows, however the matlab runs with the following message, it seems there are some mistakes in the initial values, but as i know, if the model is linearized,the initial values would all be zero, could somebody help me to solve this problem?
Configuring Dynare ...
[mex] Generalized QZ.
[mex] Sylvester equation solution.
[mex] Kronecker products.
[mex] Sparse kronecker products.
[mex] Bytecode evaluation.
[mex] k-order perturbation solver.
[mex] k-order solution simulation.
Starting Dynare (version 4.1.2).
Starting preprocessing of the model file ...
Found 24 equation(s).
Evaluating expressions...done
Computing static model derivatives:
- order 1
Computing dynamic model derivatives:
- order 1
- order 2
Processing outputs ...done
Preprocessing completed.
Starting MATLAB/Octave computing.
STEADY: numerical initial values incompatible with the following equations
17
??? Error using ==> dynare_solve
exiting ...
Error in ==> steady_ at 124
[oo_.steady_state,check] = dynare_solve([M_.fname '_static'],...
Error in ==> steady at 52
steady_;
Error in ==> BGGNPC4 at 233
steady;
Error in ==> dynare at 132
evalin('base',fname) ;
>> solve algo = 1
??? Error using ==> solve
' = ' is not a valid expression or equation.
the dynare code is:
var
Y yu C cu I iu G gu NX nxu K ku N nu Rn Rk S MC Q Z pai H epsl v;
varexo el ez eg em enx;
parameters beta theta delta alpha ingta psai cc dd zz kn cy iy gy nxy phai ingtak gamma rhor akin1 akin2 rhol rhoz rhog rhom rhonx;
beta = 0.984;
theta = 0.01;
delta = 0.025;
alpha = 0.20;
ingta = 0.9728;
psai = 0.02;
cc=0.0514;
kn = 1.5;
cy = 0.42;
iy = 0.40;
gy = 0.14;
nxy = 0.04;
dd = (1-phai)*(1-beta*phai)/phai;
zz = 1.004;
phai = 0.5884;
ingtak = 0.1626;
gamma = 0.8183;
rhor = 0.5986;
akin1 = 0.5795;
akin2 = 2.3844;
rhol = 0.8977;
rhoz = 0.7674;
rhog = 0.8875;
rhom = 0.8123;
rhonx = 0.2214;
model(linear);
Y-Y(-1)-Z-yu+yu(-1) = 0;
C-C(-1)-Z-cu+cu(-1) = 0;
I-I(-1)-Z-iu+iu(-1) = 0;
G-G(-1)-Z-gu+gu(-1) = 0;
NX-NX(-1)-Z-nxu+nxu(-1) = 0;
K-K(-1)-Z-ku+ku(-1) = 0;
N-N(-1)-Z-nu+nu(-1) = 0;
cu+Z+pai-Rn-cu(-1) = 0;
cc*(yu-ku+Z+MC)+(1-cc)*Q-Q(-1)-Rk = 0;
Rk-Rn+pai-S(-1) = 0;
phai*(Q(-1)+ku-nu)-S(-1) = 0;
ingtak*(iu-ku+Z)-Q = 0;
kn*Rk-(kn-1)*(S(-1)+Rn-pai)+nu-Z-nu(+1) = 0;
cy*cu+iy*iu+gy*gu+nxy*nxu-yu = 0;
alpha*H+(1-alpha)*ku-(1-alpha)*Z-yu = 0;
yu+MC-cu-(1+gamma)*H-epsl = 0;
pai(-1)-dd*MC(-1)-beta*pai = 0;
ku-(1-delta)*(ku(-1)-Z(-1))/zz-(1-(1-delta)/zz)*iu(-1) = 0;
Rn-rhor*Rn(-1)-(1-rhor)*(akin1*pai(-1)+akin2*Y(-1))-v = 0;
epsl-rhol*epsl(-1)-el = 0;
Z-rhoz*Z(-1)-ez = 0;
G-rhog*G(-1)-eg = 0;
NX-rhonx*NX(-1)-enx = 0;
v-rhom*v(-1)-em = 0;
end;
steady;
check;
shocks;
var el; stderr 0.01;
var eg; stderr 0.01;
var em; stderr 0.01;
var enx; stderr 0.01;
var ez; stderr 0.01;
end;
stoch_simul(periods=2000) Y, C,I,G,NX,K,N,Rn,Rk,Q,pai,H;